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SIX METHODS FOR LATENT MODERATION ANALYSIS IN MARKETING 

RESEARCH: A COMPARISON AND GUIDELINES 

 

ABSTRACT 

Moderation analysis investigates the conditions under which variables affect outcomes. In 

marketing, it is common that at least one of the target moderation variables is latent and 

measured by multiple indicators with measurement error. This paper compares six methods 

for latent moderation analysis: multi-group, means, corrected means, factor scores, product 

indicators, and latent product. It reviews their use in marketing research, describes their 

assumptions, and compares their performance with Monte Carlo simulations. Several 

recommendations follow from the results. First, although the means method is the most 

frequently used method in the review (94% of articles), it should only be used when 

reliabilities of the moderation variables are close to one, which is rare. In that situation, all 

methods except the multi-group method perform similarly well. Second, the results support 

the use of the factor scores method and latent product method when reliabilities are smaller 

than one. These methods perform best with parameter and standard error bias ≤ 5% under 

most investigated conditions. Third, specific settings can warrant the use of the multi-group 

method (if the moderator is discrete), the corrected means method (if moderation variables 

are single-indicators) and the product indicators method (if indicators are non-normally 

distributed). Practical guidelines and sample code on four statistical platforms are provided to 

stimulate the adoption of best practices for latent moderation analysis. 

 

Keywords: moderation analysis, measurement error, research methods  
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Investigating the boundary conditions to a phenomenon is central to academic research and 

crucial for decision-makers. In marketing, it commonly involves a latent moderation analysis 

in which at least one of the target moderation variables is latent and is measured by one or 

more reflective indicators. Recent examples include Auh et al. (2019), who showed that 

customer orientation dampens the effect of customer participation on satisfaction (all three 

variables are latent). Another example is a study by Atasoy and Morewedge (2017) that 

found greater differences in (latent) perceptions of psychological ownership between physical 

and digital books (manipulated) when consumers had a stronger need for control (latent trait). 

This paper focuses on latent moderation analysis and compares six main methods that 

differ in their approach and assumptions: the multi-group, means, corrected means, factor 

scores, product indicators, and latent product methods. Table 1 summarizes a literature 

review of 1,144 articles published in the Journal of Marketing Research, Journal of 

Marketing, Journal of Consumer Research and Marketing Science between 2015 and 2019. It 

shows that methods have not been equally popular. Among 656 estimated moderation effects 

in 164 articles, 94% of articles used the means method. 

The means method takes unit weighted mean scores of the indicators without 

accounting for the remaining measurement error in the score. Measurement error is the 

difference between observed and true values of a score (Wooldridge 2015, p. 288). Its 

magnitude is determined by one minus the score’s reliability, which is the proportion of 

systematic variance in the score with respect to its total variance (Bollen 1989, p. 156). It is 

known that not accounting for measurement error can severely bias estimates and/or standard 

errors (Bollen 1989; Cohen et al. 2003; Grewal et al. 2004; Spearman 1904; Wooldridge 

2015). Bias is the difference between estimated and true values of a parameter or its standard 

error (Wooldridge 2015). Thus, the popularity of the means method is in stark contrast with 

its reported poor statistical properties in face of measurement error. 
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Nevertheless, multiple reasons can explain the common use of the means method. 

First, reliabilities of measures in the literature are quite high (a mean of .88 in Table 1). 

However, as Grewal et al. (2004, p. 528) conclude: “[e]ven when reliability is fairly high by 

conventional standards, measurement error can be damaging.” One may also overlook that 

measurement error becomes more severe in latent moderation settings because the reliability 

of an interaction term is usually lower than the reliability of its components (Busemeyer and 

Jones 1983; McClelland et al. 2017). Second, researchers might believe that ignoring 

measurement error leads to underestimated moderation effects and that the means method 

would therefore be a conservative estimator. However, this is only the case for regressions 

with a single predictor in which not accounting for measurement error biases parameter 

estimates to zero (Bollen 1989; Cohen et al. 2003; Grewal et al. 2004; Spearman 1904; 

Wooldridge 2015). The direction and magnitude of bias in models with multiple predictors, 

even if some are with and some are without measurement error, are more difficult to predict 

(Bollen 1989; Cohen et al. 2003; Wooldridge 2015). Third, a comprehensive performance 

assessment of the six main latent moderation methods is lacking and hinders an informed use 

of latent moderation methods. This last point motivated this research. 

 

Table 1 

Summary of Literature Review  
Number of articles 164   

Number of studies 293 Median (SD) sample size across studies 202 (57,493) 

Number of moderation effects 656   

  Mean or mode (SD) of data features:  

Number (%) of articles with:  Size of the moderation effect .17 (.13) 

1. Multi-group 4 (2%) Size of the main effects .20 (.17) 

2. Means 154 (94%) Correlation X with Z .17 (.16) 

3. Corrected means 1 (1%) Reliability of Y, X and Z .88 (.09) 

4. Factor scores 7 (4%) Number of indicators of Y, X and Z 3 (9.33) 

5. Product indicators 1 (1%) Number of scale points of y, x and z 7 (10.83) 

6. Latent product 1 (1%)   

 

Notes: Literature review of moderation analyses in the 2015-2019 volumes of Journal of Marketing Research 

(JMR), Journal of Marketing (JM), Journal of Consumer Research (JCR) and Marketing Science (Mark. Sci.). 

Percentages may not sum to 100% due to rounding and use of multiple methods within an article. Effect sizes 

are correlations. Effect sizes and correlations report mean and SD (standard deviation) and number of indicators 

and scale points have modes and SD. Web Appendix A has detailed results. 
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Our objective is to compare the six methods for latent moderation analysis, both 

theoretically and empirically, and to provide recommendations for their use. First, we 

describe the six methods and their differences. Second, we use eight Monte Carlo simulation 

studies to investigate the statistical properties of the methods under a variety of conditions 

and in terms of four performance criteria (parameter bias, standard error bias, RMSE and 

power). The simulations manipulate, respectively, reliability of the measures (Study 1), scale 

of the indicators (Studies 2a-b), correlation between the (latent) moderation variables (Study 

2c), factor loadings (Study 3), and indicator distributions (Study 4a). They show that some 

methods, specifically the factor scores method and latent product method, outperform the 

others. In addition, the simulations examine the effects of misspecification, respectively, 

correlated measurement errors (Study 4b), and ignoring U-shaped (polynomial) effects of the 

latent variables (Study 4c), and all methods perform worse there. Third, we provide 

recommendations for future use of the methods and make sample code available to 

implement the methods. 

This paper makes several recommendations for latent moderation analysis. First, 

when the reliabilities of the moderation variables are close to one, five out of six methods 

perform well, thus the choice of method is at the researcher’s discretion. The corrected 

means, factor scores, product indicators, and latent product method have parameter bias 

under 2% and standard error bias under 5% when the reliability of Y, X and Z is a high .95 

(Study 1). Under these conditions, the parameter bias of the means method is a slightly higher 

8% (and standard error bias is 3%), less than the 10% that is considered acceptable (Feingold 

2019; Muthén and Muthén 2002). In contrast, the multi-group method has a bias higher than 

20% and should be avoided when moderators have continuous indicators.  

Second, our results support the use of the factor scores method and the latent product 

method in situations where reliabilities of the moderation variables are lower than one. Both 
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methods perform equally well under most investigated conditions, with bias levels lower than 

5%. This is the case when reliabilities are between .75 and .95 (Study 1), for seven-, five- and 

three-point categorical indicators (Study 2a), correlations between the moderation variables 

from 0 to .60 (Study 2c) and unequal indicator loadings (Study 3). Researchers might base 

their choice of either method on the availability in their preferred statistical software. 

Third, we identify specific settings in which the multi-group method and product 

indicators method can be reserved for. The multi-group method can be used for a discrete 

moderator, although the corrected means, factor scores, product indicators, and latent product 

method also perform well with biases under 5% (Study 2b). The product indicators method 

might be chosen over the other methods for non-normally distributed indicators (parameter 

bias of 5% if skewness of the moderation variables is 3 and excess kurtosis is 10, at a sample 

size of 200). Yet, its standard error bias can harm statistical conclusion validity (Study 4a).  

Web Appendix B overviews sample code to implement all methods in SPSS, Stata, R 

and Mplus, made available at an OSF repository: https://osf.io/py7jx/?view_only=

5d921a6658cf402a80bd1d4996665331. 

LATENT MODERATION ANALYSIS 

Moderation framework 

Assume the following structural latent moderation model: 

where Y is the outcome variable, X is an input variable, Z is a moderator and 𝜁~ 𝑁(0, 𝜎𝜁
2) is 

the structural error term. The parameter 𝛽3 captures the moderation effect and 𝛽1 and 𝛽2 are 

main effect parameters of respectively X and Z. This paper focuses on latent (unobserved) Y, 

X and Z but also considers the situation where Z is manifest (observed). We do not consider 

cases where all Y, X and Z are manifest as standard methods for moderation analysis can be 

(1) 𝑌 = 𝛽1 ∗ 𝑋 + 𝛽2 ∗ 𝑍 + 𝛽3 ∗ 𝑋𝑍 + 𝜁,  

https://osf.io/py7jx/?view_only=5d921a6658cf402a80bd1d499‌6665331
https://osf.io/py7jx/?view_only=5d921a6658cf402a80bd1d499‌6665331
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used in such cases (Cohen et al. 2003; Wooldridge 2015). Without loss of generality, we 

assume a zero intercept of Y. 

The parameters of the latent moderation model cannot be estimated directly because 

the true scores of Y, X and Z are latent and are reflected in one or more indicator variables 

that contain measurement error. For exposition, this paper focuses on three indicators per 

latent variable, the mode in the literature review (Table 1). We consider both continuous and 

ordered categorical indicators (e.g., Likert scales). The measurement model for X (and 

analogous for Z and Y) is: 

where, 𝛬𝑥 is a vector of loadings or weights and 𝜀𝑥 ~ 𝑁(0, 𝜃𝑥) refers to the indicator 

measurement errors with covariance matrix 𝜃. In terms of notation, we use lowercase (e.g., x) 

for indicators and uppercase (e.g., X) for latent variables or their approximations with mean 

or sum scores of indicators (e.g., 𝑋̅) or factor scores (e.g., 𝑋̂). 

Definitions of key concepts and method performance criteria 

This paper is articulated around three key concepts: latent moderation analysis, measurement 

error and reliability, which Table 2 (Panel A) defines. In addition, Table 2 (Panel B) defines 

four focal performance criteria to compare the methods for latent moderation analysis: 

parameter bias, standard error bias, RMSE (Root Mean Squared Error), and power / type I 

error. Each reflects a statistical property of the estimators that might be affected by 

measurement error and might vary across methods. This paper mainly focuses on the 

performance criteria with respect to the moderation effect because it is leading in determining 

the presence of moderation, but we also consider the main effects as the moderation type (i.e., 

crossing or not) depends on the sign, size and significance of all three parameters (Cohen et 

al. 2003). 

(2) 𝑥 = 𝛬𝑥 ∗ 𝑋 + 𝜀𝑥, 
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Parameter bias. Measurement error can bias moderation and main effects. Unbiased 

estimates are crucial as measures of scientific knowledge and might inform the managerial 

relevance of effects (Eisend 2015). If Y, X and Z are manifest (and X and Z are normally 

distributed and uncorrelated), the true moderation effect is (Cohen et al. 2003): 

and analogous for the main effects, where COV refers to a covariance and VAR to a variance. 

However, suppose that 𝑋̅𝑍̅ is a product of scores (e.g., means) of the indicators of X and Z: 

where XZ is the true score of the product of X and Z plus normally distributed and random 

(independent from all true scores and all other 𝜀s) measurement error 𝜀𝑋𝑍. Then 

COV[𝑌̅, 𝑋̅𝑍̅] = COV[𝑌, 𝑋𝑍] but VAR[𝑋̅𝑍̅]is inflated such that the estimated moderation effect 

𝛽̂3 is (Bollen 1989, pp. 154-159): 

where 𝜌𝑋̅𝑍 is the reliability of 𝑋̅𝑍̅, or in other words, the proportion of systematic variance in 

𝑋̅𝑍̅. Thus, unless 𝑋̅𝑍̅ is free of measurement error (i.e., 𝜌𝑋̅𝑍 = 1), the estimated moderation 

effect is biased towards zero, and the magnitude depends on the reliability of the product. 

These results are analogous for the main effects if X and Z are uncorrelated, but the direction 

and the magnitude of bias for all parameters becomes more difficult to determine for 

correlated predictors. Moreover, bias due to measurement error in variables might carry over 

to parameter estimates of other variables in the model, even if they do not contain 

measurement error. Yet, measurement error in Y does not bias moderation effects but might 

attenuate R2 (Bollen 1989; Cohen et al. 2003; Wooldridge 2015). 

Bias due to measurement error is not specific to latent moderation analysis. Yet it can 

be more severe in this setting because product terms typically have a lower reliability than 

(3) 𝛽3 =
COV[𝑌, 𝑋𝑍]

VAR[𝑋𝑍]
,  

(4) 𝑋̅𝑍̅ = 𝑋𝑍 + 𝜀𝑋𝑍 .  

(5) 𝛽̂3 =
VAR[𝑋𝑍]

VAR[𝑋𝑍] + VAR[𝜀𝑋𝑍]
∗ 𝛽3 = 𝜌𝑋̅𝑍 ∗ 𝛽3,  
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their components.1 The reliability of a product of 𝑋̅ and 𝑍̅ is (Busemeyer and Jones 1983, 

Equation 10): 

where rX̅,Z̅
2  is the squared correlation between the scores of X and Z. For example, if 𝑋̅ and 𝑍̅ 

have a reliability of .85, and are correlated .20, the reliability of the product term is a much 

lower .73. However, a higher correlation between 𝑋̅ and 𝑍̅ increases 𝜌𝑋̅𝑍 and increases the 

power of the estimated moderation effect (McClelland et al. 2017).  

Standard error bias. Measurement error can also bias standard errors (Bollen 1989; 

Cohen et al. 2003; Van Smeden et al. 2019; Wooldridge 2015). Unbiased standard errors are 

crucial for valid moderation tests and a valid assessment of the uncertainty of moderation 

estimates more generally. It is important to note that correcting for measurement error 

increases standard errors, even if they are unbiased. For correlations, a reasonable 

approximation for the standard error increase due to the correction is the magnitude that the 

correlation is biased downward due to measurement error (Hunter and Schmidt 2004, p. 96). 

However, standard errors are complex functions of the size of the effect, sample size, 

measure reliabilities, correlations among predictors and the estimated model (Charles 2005; 

Yuan et al. 2010). 

RMSE. The Root Mean Squared Error is based on the sum of the squared bias and the 

variance of a parameter. It summarizes parameter recovery (lower is better). RMSE can also 

be used to choose between unbiased estimators. The method with the lowest RMSE (i.e., 

lowest parameter uncertainty) among unbiased estimators is preferred. Accounting for 

measurement error decreases parameter bias and thus RMSE. At the same time, the 

measurement error correction might increase RMSE due to the larger standard error. The net 

effect on RMSE is difficult to predict. 

(6) 𝜌𝑋̅𝑍 =
𝜌𝑋̅ ∗ 𝜌𝑍 + rX̅,Z̅

2

1 + rX̅,Z̅
2 ,  
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Table 2 

Overview of Key Concepts and Method Performance Criteria 

 

Panel A: Key concepts 

Concept Definition and mathematical illustration 

Latent moderation analysis Definition: moderation analyses in which at least one of the target moderation variables is latent 

and is measured by one or more reflective indicators that contain measurement error. 

Mathematical illustration: 

𝑌 = 𝛽1 ∗ 𝑋 + 𝛽2 ∗ 𝑍 + 𝛽3 ∗ 𝑋𝑍 + 𝜁, 
where X and/or Z are latent variables that are each reflected in one or more indicators that contain 

measurement error. 

Measurement error Definition: difference between observed and true values of a score (Wooldridge 2015, p. 288). 

Mathematical illustration: 

𝑋̅𝑍̅ = 𝑋𝑍 + 𝜀𝑋𝑍, 
where 𝑋̅𝑍̅ is a product of observed (mean) scores, XZ is the product of latent variables X and Z 

and 𝜀𝑋𝑍 is measurement error. 

Reliability Definition: proportion of systematic variance in a score (Bollen 1989, p. 156). 

Mathematical illustration: 

𝜌𝑋𝑍 =
VAR[𝑋𝑍]

VAR[𝑋𝑍] + VAR[𝜀𝑋𝑍]
, 

where VAR refers to the variance. 

  

Panel B: Method performance criteria 

Criterion  Definition and operationalization in Studies 1, 2a-c, 3 and 4a-c Threshold 

Parameter bias Definition: difference between estimated and true values of 

𝛽̂ (Wooldridge 2015, p. 288). 

Operationalization: 

100 ∗ ABS [MEAN [∑
𝛽̂𝑟 − 𝛽

𝛽

𝑅

𝑟=1

]] 

≤ 10% (Feingold 2019; 

Muthén and Muthén 

2002) 

Standard error bias Definition: difference between estimated and true values of 

SE[𝛽̂] (Wooldridge 2015, p. 288). 

Operationalization: 

100 ∗ ABS

[
 
 
 
 

MEAN

[
 
 
 SE[𝛽̂𝑟] − √ 1

𝑅 − 1
∑ (𝛽̂𝑟 − (

1
𝑅

∑ 𝛽̂𝑟))
2 𝑅

𝑟=1
𝑅
𝑟=1

√ 1
𝑅 − 1

∑ (𝛽̂𝑟 − (
1
𝑅

∑ 𝛽̂𝑟))
2𝑅

𝑟=1
𝑅
𝑟=1 ]

 
 
 

]
 
 
 
 

 

≤ 5% (Feingold 2019; 

Muthén and Muthén 

2002) 

RMSE (Root Mean Squared 

Error) 
Definition: square root of mean sum of squared bias and variance of 𝛽̂ 

(Germann et al. 2015). 

Operationalization: 

√MEAN [(𝛽̂𝑟 − 𝛽)
2
+ SE[𝛽̂𝑟]

2
] 

Lowest RMSE among 

unbiased methods 

(Germann et al. 2015) 

Power / Type I error Definition: probability that 𝛽̂ is found statistically significant at (two-

tailed) p ≤ .05 (Cohen 1988, p. 1). 

Operationalization: 

100 ∗
1

𝑅
∑𝐼𝑟 { 1 if ABS [

𝛽̂𝑟

SE[𝛽̂𝑟]
]  > 1.96

 0 otherwise                         

𝑅

𝑟=1

 

Power ≥ 80% or type 

I error ≤ 5% (Cohen 

1988; Muthén and 

Muthén 2002) 

 

Notes: 𝛽̂ refers to an estimated effect for 𝛽, the true value of 𝛽1, 𝛽2 or 𝛽3, in Monte Carlo replication 𝑟 (out of 𝑅 = 5,000 

replications). 𝐴𝐵𝑆[∙] takes the absolute value, MEAN[∙] takes the mean across the 𝑅 Monte Carlo replications and SE[∙] refers to the 

estimated standard error. Then 𝐼 is an indicator function and 1.96 is the critical value based on a two-tailed Z-test with 95% 

confidence. 
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Power and type I error. Power and type I error are the probability that a parameter of 

interest is found statistically significant (Cohen 1988, p. 1). High power is crucial to find 

effects if they truly are non-zero. Measurement error decreases power and thus increases 

required sample sizes (Grewal et al. 2004). If the true parameter is zero, the analogue to 

power is type I error. Minimizing it prevents false positive results. RMSE and power 

complement each other. For instance, a high upward parameter bias can lead to a high power 

but RMSE would detect that the estimator is problematic. Among unbiased methods, both 

RMSE and power should provide qualitatively similar results. 

SIX METHODS FOR LATENT MODERATION ANALYSIS 

Figure 1 visualizes the six methods for latent moderation analysis and provides model 

equations. Table 3 overviews assumptions of the methods.  

Method 1: Multi-group 

This method estimates separate models for discrete subgroups based on the moderator. We 

focus on two groups for exposition and as common in moderation analyses (37% of 

moderation variables in the literature review). The structural model for each group g is:  

It does not include an interaction term but estimates a 𝛽1 parameter for each group. The main 

effect of Z is derived from the intercept 𝛼. Constraining 𝛽1 to be equal across groups and 

testing that model against one with a group-specific 𝛽1 tests moderation. Measurement 

models as in Equation (2) can be specified for Y and X. Grouping is straightforward for a 

discrete Z, such as different countries or experimental manipulations and so on. Yet grouping 

requires discretization based on a median or other split when Z is continuous. Such 

discretization uses partial information in Z and adds measurement error to the grouping 

variable (Irwin and McClelland 2001, 2003). 

(7) 𝑌𝑔 = 𝛼𝑔 + 𝛽1
𝑔

∗ 𝑋𝑔 + 𝜁𝑔.  
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Figure 1 

Method Visualizations and Model Equations 

 

Panel A: 1. Multi-group method 

 

 

 

 

 

 

 

 

 

Step 1 – Discretize if Z has continuous indicators: 

𝑔 = {−1 if 𝑍‾ < MEDIAN[𝑍‾],
1 otherwise.

 

 

Step 2 – Specify and estimate the model: 

𝑦𝑔 = 𝛬𝑦 ∗ 𝑌𝑔 + 𝜀𝑦, 

𝑥𝑔 = 𝛬𝑥 ∗ 𝑋𝑔 + 𝜀𝑥, 

𝑌𝑔 = 𝛼𝑔 + 𝛽1
𝑔

∗ 𝑋𝑔 + 𝜁𝑔. 

Panel B: 2. Means method Panel C: 3. Corrected means method 

 

Step 1 – Take unit weighted means: 

Taking means corresponds to the measurement models 

𝑦 = 𝛬𝑦 ∗ 𝑌 + 𝜀𝑦,  

𝑥 = 𝛬𝑥 ∗ 𝑋 + 𝜀𝑥,  

𝑧 = 𝛬𝑧 ∗ 𝑍 + 𝜀𝑧,  

where for each measurement model, the elements in 𝛬 and the 

elements in 𝜀 are constrained to be equal (McNeish and Wolf 

2020). 

 

Step 2 – Specify and estimate the structural model: 

𝑌̅ = 𝛽1 ∗ 𝑋̅ + 𝛽2 ∗ 𝑍̅ + 𝛽3 ∗ 𝑋̅𝑍̅ + 𝜁. 

 

Step 1 – Take unit weighted means (as in “2. Means”) and 

estimate reliability 𝜌 (e.g., with Cronbach’s alpha). 

 

Step 2 – Specify and estimate the model: 

𝑌‾ = 𝜆𝑌 ∗ 𝑌 + 𝜀𝑌, 

𝑋‾ = 𝜆𝑋 ∗ 𝑋 + 𝜀𝑋, 

𝑍‾ = 𝜆𝑍 ∗ 𝑍 + 𝜀𝑍, 

𝑋̅𝑍̅ = 𝜆𝑋𝑍 ∗ 𝑋𝑍 + 𝜀𝑋𝑍, 

𝑌 = 𝛽1 ∗ 𝑋 + 𝛽2 ∗ 𝑍 + 𝛽3 ∗ 𝑋𝑍 + 𝜁. 

For identification, fix the 𝜆s to 1 and the 𝜀s fix the amount of 

measurement error: 

𝑉𝐴𝑅[𝜀𝑌] = (1 − 𝜌𝑌̅) ∗ VAR[𝑌̅], 
𝑉𝐴𝑅[𝜀𝑋] = (1 − 𝜌𝑋̅) ∗ VAR[𝑋̅], 
𝑉𝐴𝑅[𝜀𝑍] = (1 − 𝜌𝑍) ∗ VAR[𝑍̅], 

𝑉𝐴𝑅[𝜀𝑋𝑍] = (1 − 𝜌𝑋̅𝑍) ∗ VAR[𝑋̅𝑍̅]. 
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Figure 1 (CONTINUED) 

 

Panel D: 4. Factor scores method Panel E: 5. Product indicators method 

 

 

Step 1 – Specify and estimate measurement models: 

First, 𝑦 = 𝛬𝑦 ∗ 𝑌 + 𝜀𝑦 (1-CFA). And then 

𝑥 = 𝛬𝑥 ∗ 𝑋 + 𝜀𝑥 simultaneously with  

𝑧 = 𝛬𝑧 ∗ 𝑍 + 𝜀𝑧, correlating X and Z (2-CFA) 

Extract Bartlett scores for Y and regression scores for X and Z: 

𝐹̂𝐵𝑎𝑟𝑡𝑙𝑒𝑡𝑡 = 𝐷𝛩−2𝛬(𝛬𝑇𝛩−2𝛬)−1, 

𝐹̂𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝐷𝛴(𝑜)
−1𝛬𝛷. 

Step 2: Specify and estimate the structural model: 

𝑌̂ = 𝛽1 ∗ 𝑋̂ + 𝛽2 ∗ 𝑍̂ + 𝛽3 ∗ 𝑋̂𝑍̂ + 𝜁. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specify and estimate the model: 

𝑦 = 𝛬𝑦 ∗ 𝑌 + 𝜀𝑦,  

𝑥 = 𝛬𝑥 ∗ 𝑋 + 𝜀𝑥,  

𝑧 = 𝛬𝑧 ∗ 𝑍 + 𝜀𝑧, 

𝑥𝑧 = 𝛬𝑥𝑧 ∗ 𝑋𝑍 + 𝜀𝑥𝑧, 

𝑌 = 𝛽1 ∗ 𝑋 + 𝛽2 ∗ 𝑍 + 𝛽3 ∗ 𝑋𝑍 + 𝜁, 

where 𝑥𝑧 are products of 𝑥 and 𝑧. 

 

Panel F: 6. Latent product method 

 

Specify and estimate the model: 

𝑦 = 𝛬𝑦 ∗ 𝑌 + 𝜀𝑦,  

𝑥 = 𝛬𝑥 ∗ 𝑋 + 𝜀𝑥,  

𝑧 = 𝛬𝑧 ∗ 𝑍 + 𝜀𝑧, 

𝑌 = 𝛽1 ∗ 𝑋 + 𝛽2 ∗ 𝑍 + 𝛽3 ∗ 𝑋𝑍 + 𝜁. 

 

 

Notes: The “steps” denote whether the measurement and structural models are estimated separately (in two steps) or not. All visualizations have three 

indicators for Y, X and Z for exposition. Circles are latent variables, and boxes are manifest indicators. Unidirectional arrows refer to loadings λ and 

regression paths β. Then ζs are structural error terms, ommitted from visualizations for exposition, and εs are measurement errors. Error variances, 

latent variances and covariances between explanatory variables X, Z, and XZ are omitted for brevity. Superscript g refers to a discrete grouping 

variable and the triangle “1” is an intercept 𝛼 (Panel A), bars (e.g., X̅) denote means (Panels B and C), and hats (e.g., X̂) denote estimated factor scores 

(Panel D). Panel E uses the “matched pairs” strategy to form three product indicators, but readily extends to other indicator pairings. In Panel F, the 

dot connecting X and Z refers to the moderation effect being inferred from the joint distribution of the indicators of X and Z and not based on 

observed product terms of X and Z and/or their indicators (Muthén and Muthén 2019). 
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Table 3 

Overview of Method Assumptions 

 

Assumption 1. Multi-group 2. Means 3. Corrected means 4. Factor scores 5. Product indicators 6. Latent product 

Measurement model       

Indicator distribution       

𝑥 ~ 𝑀𝑉𝑁(𝜇𝑥 , 𝛴𝑥) Yes - Yes Yes Yes Yes 

𝑧 ~ 𝑀𝑉𝑁(𝜇𝑧, 𝛴𝑧) No, discrete - Yes Yes Yes Yes 

𝑥𝑧 ~ 𝑀𝑉𝑁(𝜇𝑥𝑧, 𝛴𝑥𝑧) - - - - Yes - 

Account for implied non-

normality in 𝑦 
No No No No No Yes 

       

Indicator measurement errors        

All 𝜀𝑥 ~ 𝑀𝑉𝑁(0, 𝛩𝑥) freely 

estimated 
Yes No, fixed and equal 

No, fixed and equal but 

accounted for 
Yes Yes Yes 

All 𝜀𝑧 ~ 𝑀𝑉𝑁(0,𝛩𝑧) freely 

estimated 
No, fixed and equal No, fixed and equal 

No, fixed and equal but 

accounted for 
Yes Yes Yes 

All 𝜀𝑥𝑧 ~ 𝑀𝑉𝑁(0,𝛩𝑥𝑧) freely 

estimated 
- - - - Yesa - 

All 𝜀𝑦 ~ 𝑀𝑉𝑁(0, 𝛩𝑦) freely 

estimated 
Yes No, fixed and equal 

No, fixed and equal but 

accounted for 
Yes Yes Yes 

       

Indicator loadings       

All 𝛬𝑥 freely estimated Yes No, fixed and equal No, fixed and equal Yes Yes Yes 

All 𝛬𝑧 freely estimated No, fixed and equal No, fixed and equal No, fixed and equal Yes Yes Yes 

All 𝛬𝑥𝑧 freely estimated - - - - Yesa - 

All 𝛬𝑦 freely estimated Yes No, fixed and equal No, fixed and equal Yes Yes Yes 

       

Structural model       

𝜁 ~ 𝑁(0, 𝜎𝜁
2), uncorrelated 

with 𝑦, 𝑥, 𝑧, X, Z and all 𝛩 
Yes Yes Yes Yes Yes Yes 

       

 
a
: The product indicators method freely estimates the loadings and measurement errors of the product indicators but using “matched pairs” assumes that all product indicators are equally good 

representatives of the latent interaction factor XZ because the moderation result might depend on the choice of indicator pairs if indicators are not equally good, which is undesirable (Foldnes and 

Hagtvet 2014; Marsh et al. 2004). 

 

Notes: All methods except the latent product method use standard maximum likelihood estimation, which uses the expectation maximization (EM) algorithm that converges to maximum 

likelihood estimates (Dempster et al. 1977; Klein and Moosbrugger 2000). MVN(⸱) is the multivariate normal distribution and N(⸱) is the normal distribution. The “-” denotes that the assumption 

is not applicable, that is, the means method does not directly use a measurement model so it does not assume a distribution of the indicators. Similarly, the multi-group and latent product methods 

do not use manifest interactions or product terms to estimate the moderation effect; only the product indicators method uses products of indicators in the measurement model. 
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Method 2: Means 

This method uses unit weighted mean (or sum) scores of the indicators. Although mean 

scores can be used without estimating a measurement model, McNeish and Wolf (2020) show 

that unit weighted means are analogous to assuming a parallel measurement model that 

constrains indicators to be equally weighted with equal measurement error variances. The 

structural model then uses the mean scores to estimate the moderation effect without 

accounting for measurement error in the mean scores: 

The means 𝑋̅ and 𝑍̅ can be mean-centered prior to computing the interaction term 𝑋̅𝑍̅ to 

facilitate interpretation and reduce unessential multicollinearity (Cohen et al. 2003; Irwin and 

McClelland 2001). 

Method 3: Corrected means 

This method uses a product of mean scores, as the means method does, but accounts for 

measurement error in the scores by using reliability estimates. A measurement model as in 

Equation (2) can be used but with loadings and measurement errors fixed for identification 

(Bollen 1989). For example, for XZ, the loading is 𝜆𝑋𝑍 = 1 and the error variance is 𝜎𝜀𝑋𝑍
2 =

(1 − 𝜌𝑋̅𝑍̅) ∗ 𝜎𝑋̅𝑍̅
2 , where 𝜎𝑋̅𝑍̅

2  is the variance of 𝑋̅𝑍̅, and 𝜌𝑋̅𝑍 is its reliability. Reliabilities of Y, 

X and Z can be estimated with estimators such as Cronbach’s alpha, assuming unit weighted 

indicators. Then 𝜌𝑋̅𝑍̅ can be estimated with Equation (6). The structural model relates the 

latent variables as in Equation (1). Statistically, the mean scores across multiple indicators are 

single-indicators of the latent variables. Thus, the corrected means method can also be used 

for single-indicator measures if their reliability can be estimated (e.g., Pieters 2017, pp. 699-

700). 

(8) 𝑌̅ = 𝛽1 ∗ 𝑋̅ + 𝛽2 ∗ 𝑍̅ + 𝛽3 ∗ 𝑋̅𝑍̅ + 𝜁.  



15 

Method 4: Factor scores 

This method uses factor scores that estimate the latent variable scores with linear 

combinations of the indicators. A first step extracts factor scores from measurement models 

as in Equation (2) that freely estimate measurement errors and loadings. A second step 

regresses factor scores of Y on those of X, Z and the product: 

There are multiple ways to estimate factor scores. In the context of non-moderation 

models, Skrondal and Laake (2001) and Devlieger et al. (2016) have shown that using 

Bartlett factor scores for Y and regression factor scores for predictors produces estimates 

without bias: 

where 𝐷 is a matrix of indicator-level data, 𝛩 is the variance covariance matrix of the 

indicator measurement errors, 𝛬 is the matrix of estimated loadings, 𝛴(𝑜)
−1 is the observed 

covariance matrix of the indicators, and 𝛷 is the variance covariance matrix of the latent 

variables (Lastovicka and Thamodaran 1991). Bartlett factor scores account for measurement 

error in Y and regression factor scores account for measurement error in the predictors; 

combining these factor scores recovers the parameters in non-moderation models without 

parameter bias (Devlieger et al. 2016; Skrondal and Laake 2001). We apply this to the 

context of latent moderation. 

There are several ways to specify the measurement models. Measurement models for 

Y, X and Z can be estimated jointly or separately with confirmatory (CFA) or exploratory 

(EFA) factor analyses estimated with maximum likelihood. Skrondal and Laake (2001) have 

shown that separate factor analyses for Y (1-CFA or unrotated 1-EFA) and the predictors are 

necessary to avoid parameter bias. The predictors need to be combined in a joint 

(9) 𝑌̂ = 𝛽1 ∗ 𝑋̂ + 𝛽2 ∗ 𝑍̂ + 𝛽3 ∗ 𝑋̂𝑍̂ + 𝜁.  

(10) 𝐹̂𝐵𝑎𝑟𝑡𝑙𝑒𝑡𝑡 = 𝐷𝛩−2𝛬(𝛬𝑇𝛩−2𝛬)−1, 

(11) 𝐹̂𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝐷𝛴(𝑜)
−1𝛬𝛷, 
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confirmatory factor analysis (2-CFA of X and Z) because the 2-CFA accounts for the factor 

correlation of X with Z. Skrondal and Laake (2001, pp. 572-573) then show with analytical 

proofs that estimates are unbiased if the correlation is accounted for. Web Appendix C has 

additional details, including the extension to (moderated) mediation models.  

Method 5: Product indicators 

This method specifies a measurement model analogous to Equation (2) for products of 

indicators, while simultaneously estimating the structural model of Equation (1). There are 

several ways to specify this model. They differ in the product indicators to pair for 

moderation analysis and the used constraints to estimate the model. Early on, Kenny and Judd 

(1984) proposed using a measurement model of product indicators that required multiple 

constraints on the indicator loadings and measurement error variances. Foldnes and Hagtvet 

(2014) showed based on simulation studies and real-world data that there might be 

considerable variation in moderation estimates depending on the method to pair indicators. 

Using a single pair of indicators uses limited information (Jöreskog and Yang 1996), whereas 

using all pairs of indicators uses all information but might lead to overly complex models 

(Marsh et al. 2004). Marsh et al. (2004) proposed a compromise “matched pairs” approach, 

using all indicators of X and Z but each indicator only once. This approach trades off the use 

of all indicators while limiting model complexity—avoiding correlated measurement errors 

for pairs that have common components—with acceptable bias and variance implications 

(Marsh et al. 2004). Lin et al. (2010) have shown that using matched pairs and “double mean-

centering” the indicator pairs works well. It avoids the need for constraints, other than those 

for identification, on the indicator loadings and measurement error variances. 

A Web of Science citation analysis signals that the product indicators method is 

uncommonly used in the focal journals of the literature review, even beyond the included 

volumes. The three citations of Marsh et al. (2004) apply the method whereas three out of 
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four citations of Kenny and Judd (1984) refer to its methodological contribution without 

application. Moreover, the matched pairs approach in Marsh et al. (2004) has been 

accumulating more total citations (596) within and outside the marketing domain than other 

approaches have (588 citations of Kenny and Judd (1984), 272 of Jöreskog and Yang (1996), 

70 of Lin et al. (2010) and 13 of Foldnes and Hagtvet (2014)). 

Based on this, we use the matched pairs approach with double mean-centering to 

represent the product indicators method here. In our running example where both X and Z 

have three indicators taking matched pairs results in three product indicators of mean-

centered variables, for example x1z1, x2z2 and x3z3 (Marsh et al. 2004), that are 

subsequently mean-centered once more (Lin et al. 2010). 

Method 6: Latent product 

This method estimates the moderation effect from the latent product of X and Z (Klein and 

Moosbrugger 2000). The latent product method is motivated by the non-normality in Y that is 

due to the moderation specification (Klein and Moosbrugger 2000). Products of variables 

(e.g., XZ) are usually non-normally distributed, even if their components (here: X and Z) are 

normally distributed. Because Y is a function of the non-normally distributed XZ if there is a 

non-zero moderation effect, it is also non-normally distributed (Moosbrugger et al. 1997). 

Web Appendix D further details this and provides an illustrative example. The latent product 

method takes the non-normality in Y directly into account. It is therefore based on an analysis 

of the indicator distribution and uses the raw data for estimation, unlike the other methods for 

which the observed covariance matrix is sufficient. The non-normal indicator distribution can 

be approximated by a weighted sum or finite mixture of normal distributions (Klein and 

Moosbrugger 2000). The mixture distribution then becomes a tool to estimate the moderation 

effect from the latent product of the latent X and Z. Web Appendix E details this.  



18 

Commonalities and differences between the methods 

In terms of commonalities between the six methods, they all rely on the same estimation 

approach. All methods except for the latent product method use standard maximum 

likelihood estimation (Bollen 1989). The latent product method uses an expectation 

maximization (EM) algorithm that converges to maximum likelihood estimates too (Klein 

and Moosbrugger 2000), even though EM can be computationally intensive and more 

sensitive to local maxima of the likelihood (Dempster et al. 1977). 

The structural moderation models of five out of six methods (all except the multi-

group method) are virtually identical. The crucial difference is in the specification and 

assumptions of the measurement model (Table 3). The means method takes unit weighted 

mean scores of the indicators that assume a parallel measurement model (McNeish and Wolf 

2020). The means method does not account for the remaining measurement error in the 

scores. The corrected means method accounts for this shortcoming of the means method by 

fixing the amount of measurement error in the variables based on reliability estimates. Yet, it 

maintains the assumptions of a parallel measurement model. The equal indicator weighting 

biases reliability estimates downward and therefore might lead to upward parameter bias in 

the moderation effect even if measurement error is accounted for (McNeish and Wolf 2020). 

Whereas the means method and corrected means method assume equally weighted 

indicators, the measurement models of the factor scores method, product indicators method 

and latent product method freely estimate the loadings and measurement error variances. 

There are three differences between these methods. First, the factor scores method is a two-

step approach that separately estimates measurement and structural models, whereas the 

product indicators method and latent product method estimate the measurement model and 

moderation effect simultaneously. Second, although the factor scores method and latent 

product method use a product of latent variables or their scores in the case of the factor scores 
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method, the product indicators method uses products of matched pairs of indicators. This 

assumes that the product indicators are representatives of all possible pairs, essentially 

assuming equally weighted indicators. There is considerable variation in moderation 

estimates as a result of different indicator pairings if indicators are not equally good, which is 

undesirable (Foldnes and Hagtvet 2014; Marsh et al. 2004). Third, the latent product method 

is the only approach that accounts for the non-normally distributed indicators of Y due to the 

interaction (Klein and Moosbrugger 2000). However, it maintains the assumption of normally 

distributed indicators of X and Z, as well do the factor scores method and product indicators 

method. Yet interestingly, the product indicators method uses products of indicators that 

rarely meet the assumption of them being normally distributed because products are usually 

non-normally distributed even if their components are normally distributed (Moosbrugger et 

al. 1997; Oliveira et al. 2016). Web Appendix D details this. 

The multi-group method can include measurement models for the indicators of Y and 

X to account for indicator measurement error but does not rely on a product of variables and 

estimates models for discrete subgroups based on the moderators. Although naturally discrete 

moderators—such as different countries, owners of different brands, genders, experimental 

manipulations and so on—can readily be used as grouping variables, grouping by discretizing 

continuous moderators adds measurement error to the grouping variable and can lead to 

parameter bias and a decrease of power (Irwin and McClelland 2001, 2003). 

In sum, the six methods for latent moderation analysis are all based on maximum 

likelihood estimation but the main differences are in their approach and assumptions of the 

measurement model.
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Table 4 

Summary of Study Designs 

 

Study 

Methods 

compared 

Reliability of 

Y, X and Z Indicator scale of y, x and z 

Correlation of 

X with Z 

Indicator 

loadings 

Distribution of 

x and z 

Indicator  

measurement errors 

Structural model 

specification 

Study 1: Reliability of 

measures 
1-6 .95, .85, .75 Continuous .20 Equal Normal Uncorrelated Correctly specified 

Study 2a: Ordered 

categorical indicators 
1-6 .85 

Ordered categorical 

(7-, 5-, 3-point scales) 
.20 Equal Ordered categorical Uncorrelated Correctly specified 

Study 2b: Discrete 

moderator 
1-6 .95, .85, .75 

y and x: continuous 

z: discrete (binary) 
0 Equal 

x: normal 

z: discrete (binary) 
Uncorrelated Correctly specified 

Study 2c: Correlation of 

X with Z 
1-6 .85 Continuous 0, .20, .40, .60 Equal Normal Uncorrelated Correctly specified 

Study 3: Unequal 

indicator loadings 
4-6 .85 Continuous .20 

Unequal 

(1, 1.5, .50) 
Normal Uncorrelated Correctly specified 

Study 4a: Non-normally 

distributed indicators 
4-6 .85 Continuous .20 Equal Non-normala Uncorrelated Correctly specified 

Study 4b: Correlated 

measurement errors 
4-6 .85 Continuous .20 Equal Normal 

Correlated .50 (x with y, 

x with z, x with x)b 
Correctly specified 

Study 4c: Structural 

model is misspecified 
4-6 .85 Continuous 0, .20, .40, .60 Equal Normal Uncorrelated Misspecifiedc 

a: Study 4a has non-normality in x and z due to non-normality in X and Z (skewness/excess kurtosis of X and Z is 1/2 or 3/10). 
b: Study 4b condition ‘x with x’ means that indicators of X are .50 intercorrelated (with other x-indicators). 
c: Study 4c generates a polynomial of X (Y = β1X + β2Z + β4X

2) and estimates it with Equation (1). 

 

Notes: Shading denotes the focus of each study. Studies 1 and 2a-c investigate all six methods. Studies 3 and 4a-c drop the multi-group and means methods due to their performance in Studies 

1 and 2a-c. All studies vary the sample size: 100, 150, 200, 300, 500, 750 and 1,500. 
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OVERVIEW OF MONTE CARLO SIMULATION STUDIES 

We conduct Monte Carlo simulations to compare the statistical properties of the latent 

moderation methods across conditions. We use simulations because method performance and 

impact of design factor on method performance are difficult to derive analytically (Muthén 

and Muthén 2002; Skrondal 2000).  

Summary of studies 

Table 4 summarizes the designs of eight Monte Carlo simulation studies (1, 2a-c, 3, and 4a-c) 

that focus on a variety of conditions. All studies, unless indicated otherwise, are under the 

following conditions. They generate standard normally distributed Y, X and Z. Data 

generation is based on values from the literature review as much as possible, thus mimicking 

real-world situations (Table 1). The latent Y, X and Z variables have three indicators, which 

is most common in the literature review, that are equally good. Reliabilities of Y, X and Z are 

.85, which is about the mean in our literature review and the mean in a recent review of 

mediation analyses (Pieters 2017). The moderation and main effect sizes are .20, which are 

about the mean values in the literature review and small-to-medium effects (Cohen 1988). 

The correlation between X and Z is .20, about the mean in the literature review. Sample sizes 

are 100, 150, 200 (median in the literature review), 300, 500, 750 or 1,500. About 80% of the 

studies in the literature review have sample sizes between 100 and 1,500.  

For each study, we generate 5,000 replications (datasets) per cell in R (R Core Team 

2020) using common random number seeds to increase precision and for reproducibility 

(Skrondal 2000). R package lavaan (Rosseel 2012) implements all methods except for the 

latent product method. For that we call Mplus 8.3 (Muthén and Muthén 2019) from R via 

MplusAutomation (Hallquist and Wiley 2018). The OSF repository at https://osf.io/py7jx/

?view_only=5d921a6658cf402a80bd1d4996665331 has simulation code for all studies.  

https://osf.io/py7jx/?view_only=5d921a6658cf402a80bd1d4996665331
https://osf.io/py7jx/?view_only=5d921a6658cf402a80bd1d4996665331
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Method performance criteria 

Table 2 (Panel B) has the operationalizations of the performance criteria to compare the 

methods. We calculate parameter bias by taking the deviations of the estimated main or 

moderation effect parameter 𝛽̂ from its true value 𝛽 and dividing by the true value such that 

the bias is on a percentage scale. We then take the mean across Monte Carlo replications. 

Similarly, standard error bias is the mean deviation of the estimated standard error from the 

true standard error, of which the standard deviation of the estimated parameter across 

replications is an estimate (Muthén and Muthén 2002). RMSE takes the square root of the 

sum of the parameter bias and estimated variance (squared standard error) and an estimate of 

power (or type I error if the true parameter is zero) is the percentage of Monte Carlo 

replications for which the parameter of interest is statistically significant at two-tailed p ≤ .05. 

We evaluate the methods as follows. We first calculate biases in parameters and 

standard errors and retain the unbiased methods. Common acceptable levels of absolute 

parameter bias are ≤ 10% and ≤ 5% for standard error bias (Feingold 2019; Muthén and 

Muthén 2002). For the methods that meet these criteria, we consider RMSE and power. 

However, these criteria are not interpretable for biased methods because downward standard 

error bias can lead to low RMSE and upward parameter bias can lead to high power. 

Common thresholds are ≥ 80% for power and ≤ 5% type I error (Cohen 1988; Muthén and 

Muthén 2002). Panel B in Table 2 summarizes these thresholds. 

Table 5 summarizes the performance criteria for all methods across the conditions for 

each study at about the median sample size of 200 in the literature review. Web Appendices 

F-M and the material on OSF plot detailed results for the moderation and main effects. 
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Table 5 

Multi-Group (M1), Means (M2), Corrected Means (M3), Factor Scores (M4), Product Indicators (M5) and Latent Product (M6) Method Performance 

 

 Performance criterion of latent moderation method M1-6 at a sample size of 200 

 Parameter bias (in %)  Standard error bias (in %)  RMSE  Power / Type I error (in %) 

Study and condition M1 M2 M3 M4 M5 M6  M1 M2 M3 M4 M5 M6  M1 M2 M3 M4 M5 M6  M1 M2 M3 M4 M5 M6 

Study 1: Reliability of measures 

Reliability of Y, X and Z is .95 37 8 2 1 2 1  4 3 4 1 4 3  .34 .29 .31 .30 .31 .31  60 80 80 80 80 80 

Reliability of Y, X and Z is .85 40 26 3 2 4 2  4 3 4 2 10 3  .39 .31 .37 .35 .39 .37  46 66 65 65 61 64 

Reliability of Y, X and Z is .75 43 41 6 3 13 4  5 3 4 2 22 4  .45 .34 .44 .41 1.1 .45  34 52 50 51 37 48 

                            

Study 2a: Ordered categorical indicators 

7-point ordered categorical scales 34 27 1 3 1 2  4 3 3 1 5 2  .40 .32 .38 .36 .39 .38  42 60 59 60 58 58 

5-point ordered categorical scales 54 29 1 4 1 2  6 2 3 1 5 1  .41 .32 .39 .37 .40 .39  40 58 57 58 54 56 

3-point ordered categorical scales 73 38 36 5 8 4  13 8 43 2 21 3  .46 .34 .51 .40 .47 .43  33 49 46 48 43 45 

                            

Study 2b: Discrete moderator 

Reliability of Y, X and Z is .95 1 5 <1 1 1 <1  2 3 4 1 4 1  .30 .29 .30 .29 .30 .30  81 81 81 81 81 81 

Reliability of Y, X and Z is .85 1 15 1 2 1 1  3 3 3 <1 4 3  .35 .31 .33 .33 .34 .34  70 71 70 71 70 70 

Reliability of Y, X and Z is .75 2 25 2 3 2 2  5 3 3 1 5 4  .40 .33 .38 .37 .39 .39  58 60 59 59 58 58 

                            

Study 2c: Correlation of X with Z 

Correlation X with Z is 0 27 27 3 2 4 1  4 3 3 1 9 2  .37 .31 .37 .35 .39 .37  44 64 63 63 59 62 

Correlation X with Z is .20 40 26 3 2 4 2  4 3 4 2 10 3  .39 .31 .37 .35 .39 .38  46 66 65 65 61 64 

Correlation X with Z is .40 58 24 2 2 4 2  5 3 3 2 10 3  .43 .31 .38 .36 .40 .38  50 72 71 71 68 71 

Correlation X with Z is .60 86 21 2 2 3 1  5 4 4 2 10 3  .50 .31 .41 .40 .43 .42  57 79 79 80 76 79 

                            

Study 3: Unequal indicator loadings 

Indicator loadings are unequal - - 25 3 4 4  - - 4 3 12 5  - - .43 .34 .38 .37  - - 67 69 67 68 
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Table 5 (CONTINUED) 

 

 Performance criterion of latent moderation method M1-6 at a sample size of 200 

 Parameter bias (in %)  Standard error bias (in %)  RMSE  Power / Type I error (in %) 

Study and condition M1 M2 M3 M4 M5 M6  M1 M2 M3 M4 M5 M6  M1 M2 M3 M4 M5 M6  M1 M2 M3 M4 M5 M6 

Study 4a: Non-normally distributed indicators 

x and z are moderately non-

normally distributed (X and Z 

skewness is 1, excess kurtosis is 2) 

- - 5 3 5 5 

 

- - 6 5 16 4 

 

- - .38 .35 .41 .38 

 

- - 66 69 62 68 

x and z are severely non-normally 

distributed (X and Z skewness is 3, 

excess kurtosis is 10) 

- - 19 14 5 14 

 

- - 12 13 32 7 

 

- - .40 .34 .43 .37 

 

- - 79 83 76 82 

    

Study 4b: Correlated measurement errors 

Measurement errors of x are 

correlated .50 with those of y 
- - 48 45 48 47 

 
- - 3 2 10 2 

 
- - .39 .38 .42 .40 

 
- - 66 66 63 65 

Measurement errors of x are 

correlated .50 with those of z 
- - 6 8 7 6 

 
- - 4 2 9 2 

 
- - .37 .36 .40 .38 

 
- - 56 64 60 63 

Measurement errors of x are 

intercorrelated .50 
- - 21 12 21 21 

 
- - 3 2 6 2 

 
- - .34 .35 .35 .35 

 
- - 60 60 57 59 

                            

Study 4c: Structural model is misspecified a 

Correlation X with Z is 0 - - 1 2 1 1  - - 10 11 13 14  - - .38 .37 .39 .39  - - 8 8 8 9 

Correlation X with Z is .20 - - 8 9 8 9  - - 10 10 14 13  - - .40 .39 .42 .41  - - 18 21 17 22 

Correlation X with Z is .40 - - 14 15 14 15  - - 9 7 12 9  - - .45 .44 .46 .47  - - 43 48 40 48 

Correlation X with Z is .60 - - 18 18 18 19  - - 7 5 11 7  - - .52 .51 .53 .54  - - 68 73 65 72 

a: Study 4c generates a polynomial of X (Y = β1X + β2Z + β4X
2) and estimates it with Equation (1). 

 

Notes: Shaded cells indicate acceptable levels of parameter bias (maximum of the moderation and main effects) ≤ 10% and standard error bias ≤ 5% (Feingold 2019; Muthén and 

Muthén 2002) at a sample size of 200, which is about the median in the literature review (Table 1). Reported RMSE sums RMSE of the moderation and main effects and reported 

power is the estimated power of 𝛽3 as target moderation test. Then “-” indicates that the multi-group and means methods were excluded based on Studies 1 and 2a-c. Method labels 

are multi-group (M1), means (M2), corrected means (M3), factor scores (M4), product indicators (M5), latent product (M6). 
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Figure 2 

Study 1: Performance Criteria for the Moderation Effect (𝛽3) 

 

Panel A: Parameter bias of 𝛽3 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

Panel B: Standard error bias of 𝛽3 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

 

Legend: 
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Figure 2 (CONTINUED) 

 

Panel C: RMSE of 𝛽3 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

Panel D: Power of 𝛽3 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and power (as defined in Table 2) of 

the moderation effect (𝛽3) across sample sizes (log scale) and reliabilities of Y, X and Z. Horizontal dashed lines indicate parameter bias, 

standard error bias and RMSE of zero and power of 80%. Vertical dashed lines indicate a sample size of 200, which is about the median 

in the literature review (Table 1). 
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STUDY 1: RELIABILITY OF MEASURES 

Design 

Study 1 focuses on measure reliability as a determinant of method performance. The design 

is: 6 (Method) × 7 (Sample size) × 3 (Reliability of Y, X and Z: .95, .85 or .75). The 

reliability levels .95, .85 and .75 are approximately the mean in the literature review, plus and 

minus one standard deviation (Table 1). These levels are respectively excellent, good, and 

acceptable reliability (Peterson 1994). We expect that the multi-group method is biased, has a 

high RMSE and low statistical power because discretizing the continuous indicators of the 

moderator adds measurement error. We expect the means method to be biased, but the bias to 

decrease when the reliability increases. In contrast, the latent product method should recover 

parameters well. An open question is whether the corrected means method, the factor scores 

method and the product indicators method perform similar to the latent product method. 

Moreover, it is unclear how these methods perform at lower measure reliabilities (i.e., .75) 

and/or in smaller samples (e.g., 100 observations). 

Results 

Panels A-D in Figure 2 plot performance of the moderation effect estimates (y-axis) across 

sample sizes (x-axis) for each method (symbols) and across measure reliability levels (.75 in 

left plot, .85 in center plot and .95 in right plot of each panel). Overall, methods perform 

better and more similar to each other when measure reliability and sample size increase. 

However, there are several key performance differences between methods. 

Parameter bias (Panel A). The multi-group method is biased, even at high reliability 

levels of .95 and large sample sizes (e.g., 1,500) with a bias of about 20%. Similarly, the 

means method is biased for respectively 41% and 26% at reliabilities of .75 and .85. 

Increasing sample size does not reduce bias, making the multi-group method and means 

method inconsistent estimators (Wooldridge 2015, p. 287). Yet, the bias of the means method 
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at a reliability of .95 is 8%, which can be acceptable (Table 2). At that reliability, differences 

between methods become smaller. The corrected means, factor scores, product indicators, 

and the latent product method have biases about 1-2%. Differences between methods become 

larger at lower reliabilities. The product indicators method is unbiased only at larger sample 

sizes (e.g., ≥ 300) at a reliability of .75. Overall, the corrected means method, factor scores 

method and latent product method are unbiased (parameter bias below 6% across reliabilities 

and at a sample size of 200). 

 Standard error bias (Panel B). All methods except the product indicators method 

have standard error biases under 5% for sample sizes of at least 200 observations. The 

product indicators method has biased standard errors (up to about 33% at a reliability of .75) 

when measure reliability is smaller than .95. Its standard error bias reduces when sample size 

increases (e.g., bias about 5% at a reliability of .75 and sample size of 1,500). 

RMSE (Panel C). RMSE differences are small among the unbiased methods (e.g., 

between .12 (factor scores method) and .14 (product indicators method) at a reliability of .85 

and sample size of 200). The means method offers the best RMSE in smaller samples (≤ 500 

observations). However, it is biased and should therefore not be used. The product indicators 

method has a high RMSE, .55 at a reliability of .75 and a sample size of 200, due to its 

upward standard error bias. 

Power (Panel D). Among unbiased methods, the factor scores method has the highest 

power: an estimated 65% at measure reliabilities of .85 and a sample size of 200. Its power is 

51% at a reliability level of .75 and 80% for reliabilities of .95. However, power differences 

with the corrected means method and latent product method are only one to three percentage 

points across conditions. At reliabilities of .85 and a sample size of 200, the multi-group 

method (34% power due to discretization) and product indicators method (37% power due to 

standard error bias) have lower power. 
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Discussion 

Study 1 raises concerns about the performance of the means, multi-group, and product 

indicators method, even at reliabilities of .85 that are conventional in the literature review 

(Table 1) and commonly considered good (Peterson 1994). In contrast, the corrected means, 

factor scores, and latent product method perform relatively well across conditions. Their 

parameter bias is under 10% and standard error bias below 5% (Feingold 2019; Muthén and 

Muthén 2002) at a sample size of 200 (and higher). There are also little differences in power 

and RMSE between these three methods. Main effect results offer similar conclusions (Web 

Appendix F).2 

However, the estimated power to find a small-to-medium moderation effect of .20 

(about the mean in the literature review, see Table 1) at a measure reliability level of .85 

(about the mean) and a sample size of 200 (about the median) is only about 65% at best. To 

estimate required sample sizes for 80% power based on Study 1, we follow Schoemann et al. 

(2014) and extract fitted probabilities from a binary probit regression of the significance of 

the moderation effect (1 if it is statistically significant, 0 otherwise) on an intercept, the 

sample size, the dummy-coded reliability, the dummy-coded method and all interactions. The 

estimated required sample size is then the smallest sample for which the estimated likelihood 

(power) of a statistically significant moderation effect is at least 80%.  

Table 6 reports the estimates. To find a moderation effect of .20 at a reliability of .85 

and with 80% power, the corrected means, factor scores, and latent product methods need at 

 

Table 6 

Study 1: Required Sample Size Estimates To Estimate a .20 Moderation Effect With 80% Power 

 

Reliability of Y, X and Z 3. Corrected means 4. Factor scores 5. Product indicators 6. Latent product 

.75 449 [442, 455] 443 [436, 449] 537 [530, 544] 450 [443, 456] 

.85 309 [305, 314] 309 [305, 314] 334 [329, 339] 312 [307, 317] 

.95 215 [212, 218] 214 [211, 218] 217 [214, 220] 216 [213, 219] 

 

Notes: Cells contain point estimates and 95% confidence intervals of the required minimum sample sizes to estimate a 

moderation effect of .20 (about the average in the literature review) with 80% power across methods and reliabilities of 

Y, X and Z. Estimates are based on a binary probit regression (Schoemann et al. 2014). The median sample size in the 

literature review is 202 and the mean reliability is .88 (Table 1). 
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least 312 observations. This requirement is more than 50% larger than the median sample 

size of 202 in the literature review and only met by 28% of studies in our literature review. 

Thus, larger sample sizes are needed to attain sufficient power. At a high reliability of .95, 

slightly more than 200 observations are sufficient for 80% power. Smaller reliabilities of .75 

require even larger samples (e.g., ≥ 450 for latent product method). These results are in line 

with findings in the strategic management domain (Aguinis et al. 2017) and suggest that a 

substantive proportion of published moderation effects under investigation might be biased 

downward (due to the widespread use of the means method) and/or underpowered (due to 

moderation analysis in small samples). 

STUDY 2A: ORDERED CATEGORICAL INDICATORS 

Design 

Study 2a extends Study 1 by using ordered categorical indicators rather than continuous 

indicators. The design is: 6 (Method) × 7 (Sample size) × 3 (Number of scale points of y, x 

and z: 7, 5 or 3). We follow Rhemtulla et al. (2012) and use thresholds based on Z-scores that 

equally divide ±2.5 standard deviations from the mean to transform the continuous indicators. 

We focus on seven-point scales (60% of the cases in the literature review), five-point scales 

(15%), and three-point scales (below 1%) explore boundary conditions. Overall, categorical 

indicators contain less information than continuous indicators do but Rhemtulla et al. (2012) 

find that indicators with five or more ordered categories perform similar to continuous 

indicators in non-moderation settings. Study 2a tests whether this holds for latent moderation. 

Results 

First, the bias of the multi-group and means methods increases when the number of scale 

points decreases. For instance, from 27% (7-point) to 38% (3-point) parameter bias for the 

means method (26% for continuous indicators in Study 1). Second, the factor scores method 
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and latent product method remain unbiased (parameter and standard error bias below 5%) 

across conditions and their RMSE and power levels are similar (e.g., RMSE of .37 for factor 

scores and .39 for the latent product method). However, power levels are lower than in Study 

1. The latent product method has a power of 58%, 56% and 45% for seven-, five- and three-

point scales at a reliability of .85 and sample size of 200, while it had 64% power in Study 1. 

Third, the corrected means and product indicators methods are biased for three-point scales 

(standard error bias up to 43% at a sample size of 200). However, and interestingly, the 

product indicators method has a standard error bias of 5% for at least five-point scales, 

whereas it had standard error bias of 10% at a sample size of 200 for continuous indicators 

(Study 1). In this simulation, categorical scales limit extreme values in the indicators, such as 

outliers, that are more likely to occur for continuous scales and become bigger issues due to 

indicator multiplication. In sum, although categorical indicators contain less information than 

continuous ones, leading to lower power, five-point and seven-point scales perform almost 

equally to continuous indicators in terms of unbiasedness for the factor scores method and 

latent product method. The factor scores method and latent product method outperform the 

corrected means method and product indicators method for three-point scales. 

STUDY 2B: DISCRETE MODERATOR 

Design 

Study 2b extends Study 1 by focusing on a single discrete (binary) moderation indicator 

without measurement error (e.g., a country indicator or a manipulation dummy). This is the 

case for about a third of the moderation effects in the literature review (Web Appendix A). 

The design is: 6 (Method) × 7 (Sample size) × 3 (Reliability of Y, X and Z: .95, .85 or .75). 

Here, the multi-group method can use the moderator without discretization and we 

investigate how multi-group performs compared to the other methods in such a setting. 
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Results 

First, the multi-group method is unbiased (bias under 2% across sample sizes) for a discrete 

moderator. Similarly, standard error biases are under 5% at a sample size of 200. Second, the 

bias of the means method reduces compared to Study 1 but persists (about 15% at a reliability 

of .85) unless reliabilities are .95 (bias about 5%). Third, the parameter and standard error 

biases of the product indicators method reduce compared to Study 1 (below 5% across 

reliabilities of .75 to .95 and for sample sizes of 200 and larger). These findings are due to 

fact that Study 2b only has measurement error in x and y, whereas Study 1 focused on 

measurement error in y, x and z. Fourth, corrected means, factor scores, product indicators, 

and latent product methods are unbiased (parameter and standard error bias up to 5%). RMSE 

(e.g., between .33 (factor scores and corrected means) and .35 (multi-group) at a reliability of 

.85 and sample size of 200) and power (70-71%) are similar under the investigated conditions 

for the unbiased methods. In sum, the multi-group method is a well-performing alternative to 

the corrected means, factor scores, product indicators, and latent product methods for binary 

moderators without measurement error. 

STUDY 2C: CORRELATION OF X WITH Z 

Design 

Study 2c extends Study 1 by varying the correlation between X and Z (fixed to .20 in Study 

1). Typically, X and Z are correlated in observational data and this might impact method 

performance (Grewal et al. 2004). The design is: 6 (Method) × 7 (Sample size) × 4 

(Correlation of X with Z: 0, .20, .40, .60) with the correlation varying from 0 to .60, in line 

with the range in the literature review (Web Appendix A). 
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Results 

First, the bias of the moderation effect for the multi-group method decreases when the 

correlation between X and Z increases, but the main effects (see Web Appendix I) become 

more biased (up to 86% at a correlation of .60). Second, increasing the correlation between X 

and Z from 0 to .60 decreases the moderation bias for the means method from 27% to 21%. 

This is due to the higher reliability of product terms for correlated components (see Equation 

(6)). Third, the corrected means, factor scores, and latent product method are unbiased across 

conditions (parameter bias below 3% and standard error bias below 5%) whereas the product 

indicators method has standard error bias of 9-10%. The unbiased methods have similar 

RMSE and power levels (e.g., RMSE between .40 (factor scores) and .42 (latent product 

method) at a correlation of .60 and sample size of 200). Fourth, the power of the moderation 

effect increases when the correlation between X and Z increases from 0 to .60, from 62% to 

79% for the latent product method. Thus, the increase in power of the moderation effect due 

to the increased reliability of the product term trades off against the decrease in power due to 

multicollinearity. However, consistent with Grewal et al. (2004), the power of the main 

effects decreases due to multicollinearity (from 67% to 47% for the main effects; see Web 

Appendix I). In sum, the corrected means, factor scores, and latent product method are 

unbiased under the investigated conditions. Higher correlation between X and Z increases 

power to find a moderation effect but decreases power of the main effects.  

STUDY 3: UNEQUAL INDICATOR LOADINGS 

Design 

Study 3 extends Study 1 by focusing on indicators of the latent variables that differ in their 

loadings. Because the multi-group method and the means method are biased across 

conditions in Studies 1, 2a and 2c, upon which the following studies build, Studies 3 and 4a-c 

focus on the comparison between the remaining methods: factor scores, corrected means, 
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product indicators, and latent product. The design is: 4 (Method) × 7 (Sample size) with 

unequal indicators in all cells: 𝜆𝑥1= 1, 𝜆𝑥2 = 1.5, 𝜆𝑥3 = .50 (and analogous for Z and Y). We 

hold indicator measurement error variances constant such that measure (composite) 

reliabilities are equal with those from Study 1 and to make sure that differences between 

equal and unequal loading conditions are not confounded with differences in measure 

reliability. We expect the factor scores method and latent product method to perform best 

because they freely estimate loadings. The corrected means method assumes that all 

indicators are equally good representatives of their underlying latent factors, and Cronbach’s 

alpha underestimates measure reliability if this assumption is violated (McNeish and Wolf 

2020). This might lead to measurement error corrections that bias the estimates upward.  

Results 

First, as expected, the corrected means method has biased moderation and main effect 

estimates, at least 20% even at large sample sizes of 1,500. Second, the factor scores and 

latent product methods that freely estimate indicator loadings perform best, with parameter 

and standard error biases under 5% at sample sizes of 200 (and higher). Their RMSE and 

power are similar (e.g., 69% power of the factor scores method and 68% power of the latent 

product method at a sample size of 200). Third, the product indicators method has a low 

parameter bias as the factor scores method and the latent product method have, but a higher 

standard error bias (e.g., 12% at a sample size of 200). In sum, the factor scores method and 

latent product method perform best for unequal indicator loadings.  

STUDY 4A: NON-NORMALLY DISTRIBUTED INDICATORS 

Design 

Studies 4a-c investigate situations where model assumptions of all focal methods are 

violated, unlike Study 3 that only violates assumptions of the corrected means method. Study 
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4a focuses on non-normality distributed x and z, which is common when measuring 

constructs such as customer satisfaction (Peterson and Wilson 1992). The design is: 4 

(Method) × 7 (Sample size) × 2 (Skewness / excess kurtosis of X and Z: 1 / 2 or 3 / 10). 

Skewness and excess kurtosis are conventional metrics of non-normality. Both are zero for 

normally distributed variables (Oliveira et al. 2016). Because we could not determine 

skewness and excess kurtosis in our literature review, we use about the 75th and 95th 

percentiles from a recent existing review in psychology (Cain et al. 2017, p. 1720). The 

procedure described in Vale and Maurelli (1983) generates non-normal latent variables X and 

Z that reflect in non-normal indicators. Previous research concluded that non-zero skewness 

and excess kurtosis in variables lead to overestimated zero-order correlations (Bishara and 

Hittner 2015) but underestimated standard errors (Finch et al. 1997). Yet, there might be 

differences between methods. Biased reliability estimates due to non-normality can bias the 

corrected means method (Sheng and Sheng 2012). The product indicators method was found 

to be robust for different latent variable distributions (Marsh et al. 2004) although taking 

multiple indicator products might also exacerbate bias due to non-normality. The latent 

product method does not use (algebraic) multiplications of indicators so it might perform 

better, but severe non-normality can still hamper the ability of the mixture distribution to 

approximate the indicator distribution (Klein and Moosbrugger 2000). 

Results 

First, all methods are biased (up to 19% for the corrected means method) in presence of 

severe non-normality in x and z (i.e., skewness of X and Z is 3 and excess kurtosis is 10). 

One exception is the product indicators method with 5% parameter bias at a sample size of 

200. Second, standard errors of all methods are also biased, including those of the product 

indicators method (standard error bias of 32%). Third, for moderately non-normally 

distributed indicators (i.e., skewness of X and Z is 1 and excess kurtosis is 2), the factor 
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scores method and latent product method have biases under 5%. RMSE and power levels are 

similar (e.g., RMSE .35-.38 at a sample size of 200). In sum, the expectation of severe non-

normally distributed indicators with skewness and excess kurtosis might call for the product 

indicators method even though its statistical conclusion validity might be questionable due to 

biased standard errors. 

STUDY 4B: CORRELATED MEASUREMENT ERRORS 

Design 

Study 4b focuses on another type of misspecification: correlated measurement errors. The 

design is: 4 (Method) × 7 (Sample size) × 3 (Measurement error correlation: x with y, x with 

z or x with x). Correlated measurement errors can occur due to omitted variables in the 

measurement model such as method factors or response tendencies (Baumgartner and 

Weijters 2017). We focus on three types of measurement error correlations. First, we generate 

error correlations between indicators of x and y (denoted ‘x with y’). Evans (1985) and 

Siemsen et al. (2010) showed in the context of the means method that measurement error 

correlations between x and y do not bias moderation effects upward but can bias them 

downward depending on the magnitude of measurement error correlation. However, it is 

unclear whether these results hold for the main effects, the other methods, and for other 

measurement error correlations. Henceforth, the design also includes measurement error 

correlation between moderation indicators x and z and for indicators of X with other 

indicators of X (denoted ‘x with x’). For brevity, we do not focus on measurement error 

correlations of z with y (analogous to x with y) and z with z (analogous to x with x). The 

measurement error correlation in all cells is .50. To generate the correlated measurement 

errors for x with y (analogous for x with z), we correlate indicator x1 with y1, x2 with y2, and 

x3 with y3. Measurement error correlations of x with x intercorrelate all three indicators of X.  
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Results 

First, measurement error correlations of .50 between x and y bias the main effect estimate of 

X up to 50% for all methods (Web Appendix L has details) even though the moderation 

effect is unbiased (under 5%). This extends what was previously found for the means method 

(Evans 1985; Siemsen et al. 2010). Second, under the investigated conditions, measurement 

error correlations of x with z yield parameter biases under 10% for the moderation and main 

effects across methods, much less than for measurement error correlations between x and y. 

However, the standard error bias of the product indicators method is 9% whereas the standard 

error bias of the corrected means, factor scores and latent product methods is 2-4%. Third, 

measurement error correlations of x with x also severely bias the moderation and main effects 

of the corrected means method, product indicators method and latent product method for 

about 21%. However, the bias is 12%, about 9% less, for the factor scores method. One 

reason for this result might be that the two-step estimation of the factor scores method, 

compared to one-step or simultaneous estimation of the latent product method, is more robust 

to misspecification in the measurement model (Devlieger and Rosseel 2017; Rosseel 2020; 

Smid and Rosseel 2020). Thus, under the investigated conditions, correlated measurement 

error biases all methods. The bias is most severe for measurement error correlations of 

predictors with outcomes (e.g., x with y). 

STUDY 4C: STRUCTURAL MODEL IS MISSPECIFIED 

Design 

Study 4c focuses on misspecification of the structural model. The design is: 4 (Method) × 7 

(Sample size) × 4 (Correlation of X with Z: 0, .20, .40, .60). It generates the data with a U-

shape of X (i.e., 𝑌 = 𝛽1𝑋 + 𝛽2𝑍 + 𝛽4𝑋
2) and uses the structural model in Equation (1) for 

estimation. Because moderation product terms and squared terms are generally correlated due 

to their common lower order components if they are not manipulated (Ganzach 1997), the 
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design varies the correlation between X and Z. Although we expect little differences between 

the methods, it is difficult to quantify bias and resulting type I error analytically. 

Results 

First, when X and Z are uncorrelated, we find that the methods yield unbiased (≤ 2%) 

moderation effects. Bias for all methods is just under 10% when X and Z are correlated .20. 

Second, when the correlation between X and Z increases, the bias due to misspecification 

increases, for instance to 19% for the latent product method and at a correlation of X with Z 

of .60 and a sample size of 200. Third, standard errors of all methods are biased between 5% 

and 15% across conditions, even at large sample sizes of 1,500. Fourth, all methods have type 

I error ≥ 5% across conditions, about 20% at a correlation of .20 and a sample size of 200, 

which further increases if the correlation between X and Z or sample size increases. 

GENERAL DISCUSSION 

We compared six methods for latent moderation analysis and provide several 

recommendations for latent moderation analysis. First, the choice between five out of the six 

methods is at the researcher’s discretion when reliabilities of moderation variables approach 

one. Although the multi-group method is biased for over 20% when the indicators of the 

moderator are continuous, the parameter bias of the corrected means, factor scores, product 

indicators, and latent product methods across sample sizes is under 2% and the standard error 

bias under 5% when the reliability of Y, X and Z was a high .95 (Study 1). The parameter 

bias of the means method is then 8% (and standard error bias 3%), which might be acceptable 

(Table 2). Even more, RMSE and power differences were small. The closer the reliabilities of 

the moderating variables are to one, the more similar the performance of five out of the six 

methods becomes. 
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Yet, reliabilities of moderation variables approaching one is rare in practice: the mean 

reliability in the literature review was .88 (Table 1) and only 13% of moderation tests had 

reliabilities of the moderation variables ≥ .95. Thus, our findings and recommendation are in 

contrast with the 94% use of the means method in the literature review (Table 1). It is well 

known that ignoring measurement error can bias parameter estimates (Grewal et al. 2004; 

Spearman 1904; Wooldridge 2015). Study 1 shows the bias of the means method once more 

and our Monte Carlo studies quantify it in the latent moderation context: the moderation 

effect bias of the means method is 40% and 25% respectively at reliabilities of .75 and .85. 

Second, the factor scores method and latent product method are recommended across 

most investigated conditions (Table 5). When indicators are continuous (Study 1) or seven-, 

five- or three-point ordered categorical (Study 2a), or when the moderator is binary (Study 

2b), and across reliabilities between .75 and .95 (Studies 1 and 2b), the factor scores method 

and latent product method have parameter and standard error biases ≤ 5%. The bias remains 

small when the correlation between moderation variables increases from 0 to .60 (Study 2c) 

and for unequal indicator loadings (Study 3). We conclude from the small RMSE and power 

differences within the conditions of our studies that the choice between the factor scores 

method and the latent product method is mostly at the researcher’s discretion. Method 

accessibility can then be relevant. Factor scores are available in most general statistical 

software packages. The latent product method is to our knowledge currently only available in 

Mplus (Muthén and Muthén 2019) and in an R package (Umbach et al. 2017). A follow-up 

study in Web Appendix N compares both latent product implementations and recommends 

Mplus in terms of performance, computation time, and the range of possible models that can 

be estimated. One key researcher decision to use the latent product method is the number of 

mixture components. A follow-up study in Web Appendix O shows that the default in Mplus 

is adequate to estimate a single moderation effect (Klein and Moosbrugger 2000). 
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When using the factor scores method, decisions need to be made about the type of 

measurement model and the factor scores estimation method. We draw from Skrondal and 

Laake (2001) and Devlieger et al. (2016) and our own analyses to recommend the following 

“two-step factor scores (TSFS)” method for latent moderation analysis. 

Step 1: conduct a confirmatory factor analysis with the outcome (Y) as a single factor 

(1-CFA) and extract Bartlett factor scores. The 1-CFA uses optimal indicator weighting and 

Bartlett factor scores account for measurement error in the outcome. Then conduct a separate 

confirmatory factor analysis for the predictors (X and Z) simultaneously with two factors that 

are allowed to correlate (2-CFA, no cross-loadings) and extract regression factor scores to 

assure optimal indicator weighting and account for measurement error in predictors.  

Step 2: compute the product term from the factor scores of the predictors (multiply) 

and estimate moderation and main effects with the target regression or path model. We 

demonstrate that this TSFS method for latent moderation analysis performs well across the 

examined range of conditions, and about as well as the latent product method that estimates 

the measurement and structural models simultaneously. Web Appendix P contains a follow-

up simulation study that empirically examines the harm of using different factor scores 

methods than those recommended here. 

Third, the multi-group, corrected means, and product indicators method are best 

reserved for specific settings. The multi-group method can be used for discrete moderators 

with bias less than 5% although the corrected means, factor scores, product indicators, and 

latent product method perform similarly. The corrected means method was found by others to 

perform well and similarly to the latent product method for single-indicators (Hsiao et al. 

2021). In that case, the factor scores method cannot be used. Still, if a single-indicator that 

contains measurement error is available it becomes more difficult to estimate unreliability 

and hence to account for it, compared to multi-indicator measures for which reliability 
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estimators are readily available (Kamakura 2015). We refer to Pieters (2017, pp. 699-700) 

and the references therein for guidance. We identify one setting in which the product 

indicators method outperforms the factor scores method and the latent product method. The 

product indicators method had an estimated parameter bias of about 5% (parameter bias of 

14% for the factor scores method and the latent product method) when the moderation 

variables had a skewness of 3 and excess kurtosis of 10 and at a sample size of 200 (Study 

4a). Yet, standard errors of the product indicators method, as well as those of the other 

methods remain biased (e.g., 32% standard error bias for the latent product method at a 

sample size of 200), which can harm statistical conclusion validity. Overall, these 

recommendations should provide actionable guidelines for method use. Web Appendix B 

overviews sample code for method implementation in SPSS, Stata, R and Mplus, made 

available on OSF: https://osf.io/py7jx/?view_only=5d921a6658cf402a80bd1d4996665331.  

There are situations when the corrected means, factor scores, product indicators, and 

latent product methods all perform poorly. First, although we showed that correlations 

between (latent variables) X and Z up to .60 have a negligible effect on the bias of these 

methods (Study 2c), they can be biased when measurement errors of individual indicators 

(e.g., x and z) are correlated, independent of the correlation between X and Z. This may 

occur, for instance, when indicators of X and/or Z are regular and reversed items. Then, the 

measurement model needs to be adapted (e.g., Baumgartner and Weijters 2017; Weijters et 

al. 2013), such as by introducing a method factor or having specific errors correlate, before 

applying the methods that we have compared here. Second, if the true effect of X on Y is U-

shaped (polynomial) but not specified (Hutchinson et al. 2000), not only the means method 

(Ganzach 1997), but all methods perform poorly (Study 4c). That is, if the data generating 

process is a U-shape effect of X on Y, using a specification of the moderation without the 

polynomial X2 leads to type I errors for all methods. Then, a non-zero moderation effect 

https://osf.io/py7jx/?view_only=5d921a6658cf402a80bd1d4996665331
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between X and Z might be observed, whereas none exists in the data, which can avoided by 

examining moderation and curvilinear effects simultaneously (Ganzach 1997). 

Among our findings, the small differences in performance between the TSFS method 

and the latent product method across the focal conditions are noteworthy. One might have 

expected that joint estimation of the measurement and structural models by the latent product 

method should empirically perform better than the TSFS method. Recent research in the non-

moderation context has been drawing attention to the role of two-step vs. conventional 

simultaneous estimation of latent variable models (Devlieger and Rosseel 2017; Rosseel 

2020; Smid and Rosseel 2020).3 Conceptually, the TSFS method matches the estimation of 

the measurement and structural models as a combination of two separate models (Anderson 

and Gerbing 1988). Empirically, one advantage of two-step estimation is that measurement 

model misspecification might lead to less structural model bias, or vice versa (Devlieger and 

Rosseel 2017). Our Study 2c found this to be the case in the context of within-construct 

correlated measurement errors, although the reduction in bias of the factor scores method 

compared to the latent product method was a modest 9% under the investigated conditions. 

Moreover, two-step methods might have less convergence issues or ineligible solutions than 

simultaneous estimation methods do (Smid and Rosseel 2020). Follow-up analyses of our 

Study 1 find that although non-convergence was rare, all replications converged for the TSFS 

method and the corrected means method (both two-step methods). In contrast, 2.4% of 

replications for the product indicators method and less than 1% of replications for the latent 

product method (both one-step methods) did not converge. Among non-converging 

replications, small sample sizes of 100 or 150 (about 84%) and low reliabilities of .75 (about 

86% of non-converging replications) were most common, which might support the use of 

two-step estimation to avoid convergence issues of simultaneous estimation in such settings 
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(Rosseel 2020). In sum, the TSFS method for latent moderation analysis is accessible and its 

estimates have a small bias with low variance across a large range of conditions. 

With this foundation, our study opens several avenues for further research. First, one 

might investigate the performance of Bayesian estimation, which might do well in small 

samples and facilitates the incorporation of prior information, potentially resulting in more 

precise estimates and moderation tests with higher power. Asparouhov and Muthén (2021) 

conduct simulation studies for the latent product method. Second, although this research 

studied both random and correlated indicator measurement error, it does not focus on 

methods to account for correlated measurement errors. If correlated measurement errors are 

expected, the latent product method might be preferred over the factor scores method because 

it uses separate factor analyses for predictors and outcomes in which error correlations 

between predictors and outcomes cannot be accounted for. The latent product method 

estimates the measurement and structural models simultaneously. Further research might 

investigate this. We refer to Baumgartner and Weijters (2017) for an overview of models to 

account for correlated measurement errors in a non-moderation setting. Third, although the 

Monte Carlo simulations study a variety of conditions, including settings that violate 

assumptions, the simulations can be extended further. For instance, the question remains how 

the methods perform for multi-level or multi-time data and fixed or random effects models. 

Similarly, method performance in case of (latent) instrumental variables can be assessed. 

 In sum, it is hard to justify the continued use of the means method for latent 

moderation analysis unless measurement reliabilities approach one. Researchers are well 

advised to apply other methods for latent moderation analysis such as the two-step factor 

scores (TSFS) method and the latent product method. We hope that our recommendations 

improve moderation theory testing and help marketing researchers planning their next latent 

moderation studies.



44 

REFERENCES 

Aguinis, Herman, Jeffrey R. Edwards, and Kyle J. Bradley (2017), "Improving Our 

Understanding of Moderation and Mediation in Strategic Management Research," 

Organizational Research Methods, 20 (4), 665-85. 

 

Anderson, James C. and David W. Gerbing (1988), "Structural Equation Modeling in 

Practice: A Review and Recommended Two-Step Approach," Psychological Bulletin, 103 

(3), 411-23. 

 

Asparouhov, Tihomir and Bengt O. Muthén (2021), "Bayesian Estimation of Single and 

Multilevel Models with Latent Variable Interactions," Structural Equation Modeling: A 

Multidisciplinary Journal, 28 (2), 314-28. 

 

Atasoy, Ozgun and Carey K. Morewedge (2017), "Digital Goods Are Valued Less Than 

Physical Goods," Journal of Consumer Research, 44 (6), 1343-57. 

 

Auh, Seigyoung, Bulent Menguc, Constantine S. Katsikeas, and Yeon Sung Jung (2019), 

"When Does Customer Participation Matter? An Empirical Investigation of the Role of 

Customer Empowerment in the Customer Participation–Performance Link," Journal of 

Marketing Research, 56 (6), 1012-33. 

 

Baumgartner, Hans and Bert Weijters (2017), "Measurement Models for Marketing 

Constructs," in Handbook of Marketing Decision Models, Berend Wierenga and Ralf van der 

Lans, eds. 2nd ed. Cham, Switzerland: Springer. 

 

Bishara, Anthony J. and James B. Hittner (2015), "Reducing Bias and Error in the 

Correlation Coefficient Due to Nonnormality," Educational and Psychological Measurement, 

75 (5), 785-804. 

 

Bollen, Kenneth A. (1989), Structural Equations with Latent Variables. New York: Wiley. 

 

Busemeyer, Jerome R. and Lawrence E. Jones (1983), "Analysis of Multiplicative 

Combination Rules When the Causal Variables Are Measured with Error," Psychological 

Bulletin, 93 (3), 549-62. 

 

Cain, Meghan K., Zhiyong Zhang, and Ke-Hai Yuan (2017), "Univariate and Multivariate 

Skewness and Kurtosis for Measuring Nonnormality: Prevalence, Influence and Estimation," 

Behavior Research Methods, 49 (5), 1716-35. 

 

Charles, Eric P. (2005), "The Correction for Attenuation Due to Measurement Error: 

Clarifying Concepts and Creating Confidence Sets," Psychological Methods, 10 (2), 206-26. 

 

Cohen, Jacob (1988), Statistical Power Analysis for the Behavioral Sciences (2nd ed.). 

Hillsdale, NJ: Lawrence Erlbaum Associates. 

 

Cohen, Jacob, Patricia Cohen, Stephen G. West, and Leona S. Aiken (2003), Applied 

Multiple Regression/Correlation Analysis for the Behavioral Sciences (3rd ed.). Mahwah, NJ: 

Lawrence Erlbaum Associates. 



45 

 

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977), "Maximum Likelihood from 

Incomplete Data Via the EM Algorithm," Journal of the Royal Statistical Society. Series B 

(Methodological), 39 (1), 1-38. 

 

Devlieger, Ines, Axel Mayer, and Yves Rosseel (2016), "Hypothesis Testing Using Factor 

Score Regression: A Comparison of Four Methods," Educational and Psychological 

Measurement, 76 (5), 741-70. 

 

Devlieger, Ines and Yves Rosseel (2017), "Factor Score Path Analysis," Methodology, 13 (1), 

31-38. 

 

Dimitruk, Polina, Karin Schermelleh-Engel, Augustin Kelava, and Helfried Moosbrugger 

(2007), "Challenges in Nonlinear Structural Equation Modeling," Methodology: European 

Journal of Research Methods for the Behavioral and Social Sciences, 3 (3), 100-14. 

 

Eisend, Martin (2015), "Have We Progressed Marketing Knowledge? A Meta-Meta-Analysis 

of Effect Sizes in Marketing Research," Journal of Marketing, 79 (3), 23-40. 

 

Evans, Martin G. (1985), "A Monte Carlo Study of the Effects of Correlated Method 

Variance in Moderated Multiple Regression Analysis," Organizational Behavior and Human 

Decision Processes, 36 (3), 305-23. 

 

Feingold, Alan (2019), "Time-Varying Effect Sizes for Quadratic Growth Models in 

Multilevel and Latent Growth Modeling," Structural Equation Modeling: A Multidisciplinary 

Journal, 26 (3), 418-29. 

 

Finch, John F., Stephen G. West, and David P. MacKinnon (1997), "Effects of Sample Size 

and Nonnormality on the Estimation of Mediated Effects in Latent Variable Models," 

Structural Equation Modeling: A Multidisciplinary Journal, 4 (2), 87-107. 

 

Foldnes, Njål and Knut Arne Hagtvet (2014), "The Choice of Product Indicators in Latent 

Variable Interaction Models: Post Hoc Analyses," Psychological Methods, 19 (3), 444-57. 

 

Ganzach, Yoav (1997), "Misleading Interaction and Curvilinear Terms," Psychological 

Methods, 2 (3), 235-47. 

 

Germann, Frank, Peter Ebbes, and Rajdeep Grewal (2015), "The Chief Marketing Officer 

Matters!," Journal of Marketing, 79 (3), 1-22. 

 

Grewal, Rajdeep, Joseph A. Cote, and Hans Baumgartner (2004), "Multicollinearity and 

Measurement Error in Structural Equation Models: Implications for Theory Testing," 

Marketing Science, 23 (4), 519-29. 

 

Hallquist, Michael N. and Joshua F. Wiley (2018), "MplusAutomation: An R Package for 

Facilitating Large-Scale Latent Variable Analyses in Mplus," Structural Equation Modeling: 

A Multidisciplinary Journal, 25 (4), 621-38. 

 



46 

Hsiao, Yu-Yu, Oi-Man Kwok, and Mark H. C. Lai (2021), "Modeling Measurement Errors of 

the Exogenous Composites from Congeneric Measures in Interaction Models," Structural 

Equation Modeling: A Multidisciplinary Journal, 28 (2), 250-60. 

 

Hunter, John E. and Frank L. Schmidt (2004), Methods of Meta-Analysis: Correcting Error 

and Bias in Research Findings (2nd ed.). Thousand Oaks, CA: Sage. 

 

Hutchinson, J. Wesley, Wagner A. Kamakura, and John G. Lynch (2000), "Unobserved 

Heterogeneity as an Alternative Explanation for “Reversal” Effects in Behavioral Research," 

Journal of Consumer Research, 27 (3), 324-44. 

 

Irwin, Julie R. and Gary H. McClelland (2001), "Misleading Heuristics and Moderated 

Multiple Regression Models," Journal of Marketing Research 38 (1), 100-09. 

 

---- (2003), "Negative Consequences of Dichotomizing Continuous Predictor Variables," 

Journal of Marketing Research, 40 (3), 366-71. 

 

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2013), An Introduction 

to Statistical Learning (1st ed.). New York: Springer. 

 

Jöreskog, Karl G. and Fan Yang (1996), "Nonlinear Structural Equation Models: The Kenny-

Judd Model with Interaction Effects," in Advanced Structural Equation Modeling: Issues and 

Techniques, G. Marcoulides and R. Schumacker, eds. New York, NY: Psychology Press. 

 

Kamakura, Wagner A. (2015), "Measure Twice and Cut Once: The Carpenter’s Rule Still 

Applies," Marketing Letters, 26 (3), 237-43. 

 

Kenny, David A. and Charles M. Judd (1984), "Estimating the Nonlinear and Interactive 

Effects of Latent Variables," Psychological Bulletin, 96 (1), 201-10. 

 

Klein, Andreas and Helfried Moosbrugger (2000), "Maximum Likelihood Estimation of 

Latent Interaction Effects with the LMS Method," Psychometrika, 65 (4), 457-74. 

 

Lastovicka, John L. and Kanchana Thamodaran (1991), "Common Factor Score Estimates in 

Multiple Regression Problems," Journal of Marketing Research, 28 (1), 105-12. 

 

Lin, Guan-Chyun, Zhonglin Wen, Herbert W. Marsh, and Huey-Shyan Lin (2010), 

"Structural Equation Models of Latent Interactions: Clarification of Orthogonalizing and 

Double-Mean-Centering Strategies," Structural Equation Modeling: A Multidisciplinary 

Journal, 17 (3), 374-91. 

 

Marsh, Herbert W., Zhonglin Wen, and Kit-Tai Hau (2004), "Structural Equation Models of 

Latent Interactions: Evaluation of Alternative Estimation Strategies and Indicator 

Construction," Psychological Methods, 9 (3), 275-300. 

 

McClelland, Gary H., Julie R. Irwin, David Disatnik, and Liron Sivan (2017), 

"Multicollinearity Is a Red Herring in the Search for Moderator Variables: A Guide to 

Interpreting Moderated Multiple Regression Models and a Critique of Iacobucci, Schneider, 

Popovich, and Bakamitsos (2016)," Behavior Research Methods, 49 (1), 394-402. 

 



47 

McNeish, Daniel and Melissa Gordon Wolf (2020), "Thinking Twice About Sum Scores," 

Behavior Research Methods, 52 (6), 2287-305. 

 

Moosbrugger, Helfried, Karin Schermelleh-Engel, and Andreas Klein (1997), 

"Methodological Problems of Estimating Latent Interaction Effects," Methods of 

Psychological Research Online, 2 (2), 95-111. 

 

Muthén, Linda K. and Bengt O. Muthén (2002), "How to Use a Monte Carlo Study to Decide 

on Sample Size and Determine Power," Structural Equation Modeling: A Multidisciplinary 

Journal, 9 (4), 599-620. 

 

---- (2019), Mplus User's Guide (8th ed.). Los Angeles, CA: Muthén & Muthén. 

 

Oliveira, Amílcar, Teresa Oliveira, and Antonio Seijas-Macías (2016), "Evaluation of 

Kurtosis into the Product of Two Normally Distributed Variables," AIP Conference 

Proceedings, 1738 (1), 1-4. 

 

Peterson, Robert A. (1994), "A Meta-Analysis of Cronbach's Coefficient Alpha," Journal of 

Consumer Research, 21 (2), 381-91. 

 

Peterson, Robert A. and William R. Wilson (1992), "Measuring Customer Satisfaction: Fact 

and Artifact," Journal of the Academy of Marketing Science, 20 (1), 61. 

 

Pieters, Rik (2017), "Meaningful Mediation Analysis: Plausible Causal Inference and 

Informative Communication," Journal of Consumer Research, 44 (3), 692-716. 

 

R Core Team (2020), "R: A Language and Environment for Statistical Computing." Vienna, 

Austria: R Foundation for Statistical Computing. 

 

Rhemtulla, Mijke, Patricia É Brosseau-Liard, and Victoria Savalei (2012), "When Can 

Categorical Variables Be Treated as Continuous? A Comparison of Robust Continuous and 

Categorical SEM Estimation Methods under Suboptimal Conditions," Psychological 

Methods, 17 (3), 354-73. 

 

Rosseel, Yves (2012), "lavaan: An R Package for Structural Equation Modeling," Journal of 

Statistical Software, 48 (2), 1-36. 

 

---- (2020), "Small Sample Solutions for Structural Equation Modeling," in Small Sample 

Solutions: A Guide for Applied Researchers and Practitioners, Rens Van de Schoot and 

Milica Miočević, eds. New York: Routhledge. 

 

Schoemann, Alexander M., Patrick Miller, Sunthud Pornprasertmanit, and Wei Wu (2014), 

"Using Monte Carlo Simulations to Determine Power and Sample Size for Planned Missing 

Designs," International Journal of Behavioral Development, 38 (5), 471-79. 

 

Sheng, Yanyan and Zhaohui Sheng (2012), "Is Coefficient Alpha Robust to Non-Normal 

Data?," Frontiers in Psychology, 3 (34), 1-13. 

 



48 

Siemsen, Enno, Aleda Roth, and Pedro Oliveira (2010), "Common Method Bias in 

Regression Models with Linear, Quadratic, and Interaction Effects," Organizational 

Research Methods, 13 (3), 456-76. 

 

Singh, Sunil K., Detelina Marinova, and Jagdip Singh (2020), "Business-to-Business E-

Negotiations and Influence Tactics," Journal of Marketing, 84 (2), 47-68. 

 

Skrondal, Anders (2000), "Design and Analysis of Monte Carlo Experiments: Attacking the 

Conventional Wisdom," Multivariate Behavioral Research, 35 (2), 137-67. 

 

Skrondal, Anders and Petter Laake (2001), "Regression among Factor Scores," 

Psychometrika, 66 (4), 563-75. 

 

Smid, Sanne C. and Yves Rosseel (2020), "SEM with Small Samples: Two-Step Modeling 

and Factor Score Regression Versus Bayesian Estimation with Informative Priors," in Small 

Sample Solutions: A Guide for Applied Researchers and Practitioners, Rens Van de Schoot 

and Milica Miočević, eds. New York: Routhledge. 

 

Spearman, C. (1904), "The Proof and Measurement of Association between Two Things," 

The American Journal of Psychology, 15 (1), 72-101. 

 

Umbach, Nora, Katharina Naumann, Holger Brandt, and Augustin Kelava (2017), "Fitting 

Nonlinear Structural Equation Models in R with Package nlsem," Journal of Statistical 

Software, 77 (1), 1-20. 

 

Vale, C. David and Vincent A. Maurelli (1983), "Simulating Multivariate Nonnormal 

Distributions," Psychometrika, 48 (3), 465-71. 

 

Van Smeden, Maarten, Timothy L. Lash, and Rolf H. H. Groenwold (2019), "Reflection on 

Modern Methods: Five Myths About Measurement Error in Epidemiological Research," 

International Journal of Epidemiology, 49 (1), 338-47. 

 

Weijters, Bert, Hans Baumgartner, and Niels Schillewaert (2013), "Reversed Item Bias: An 

Integrative Model," Psychological Methods, 18 (3), 320-34. 

 

Wooldridge, Jeffrey M. (2015), Introductory Econometrics: A Modern Approach (6th ed.). 

Boston, MA: Cengage Learning. 

 

Yuan, Ke-Hai, Ying Cheng, and Wei Zhang (2010), "Determinants of Standard Errors of 

MLEs in Confirmatory Factor Analysis," Psychometrika, 75 (4), 633-48. 

 

  



49 

FOOTNOTES 

1 A reliability estimator of X2 is the square of the reliability of X (Dimitruk et al. 2007), so by 

definition lower than the reliability of X and usually lower than the reliability of X and Z (if 

reliability Z = reliability X) unless X and Z are uncorrelated.  

2 There is a possibility that the performance of the methods differs for specific subsets of the 

data. For instance, methods that are more heavily parameterized (like the product indicators 

method and the latent product method) might be more prone to fitting idiosyncrasies in the 

data (e.g., sampling error) instead of recovering the true moderation effect, which is 

undesirable. We perform ten-fold cross-validation (James et al. 2013, p. 181; Singh et al. 

2020) to examine this. We use the focal four performance criteria to compare the methods. 

Preferred methods should only have small differences in terms of the in-sample performance 

criteria and those based on ten-fold cross validation. Web Appendix F summarizes cross-

validation results of Study 1 that have only small differences with the in-sample performance. 

This is encouraging and rules out overfitting. Because we find little substantive differences 

between performance of the methods in-sample and based on ten-fold cross-validation, 

Studies 2a-c, 3 and 4a-c do not perform cross-validation. 

3 A Web of Science citation analysis of Anderson and Gerbing (1988), an early study 

advocating for two-step estimation of measurement and structural models, showed that the 

total number of citations per year increased from 149 in 2000 to 244 in 2005, 614 in 2010, 

1,140 in 2015 and 2,143 in 2020. This might signal a more general trend of using two-step 

estimation for latent variable models. 
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Web Appendix A: Literature review 

The purpose of the literature review is twofold. First, it seeks to assess the usage of the 

methods for moderation analysis in marketing research. Second, the results serve as an input 

for realistic Monte Carlo simulation studies that assess the performance of the methods. 

We searched all 1,144 articles published in five volumes (2015-2019) of the premier 

marketing outlets Journal of Marketing Research (JMR), Journal of Marketing (JM), Journal 

of Consumer Research (JCR) and Marketing Science (Mark. Sci.) for keywords related to 

moderation. Specifically, the search was “moderat OR interact OR U-shape.” The objective 

was to select articles with at least one moderation effect that could in principle be estimated 

with each of the methods. Hence, we manually selected articles with moderation effects 

(including quadratic effects or U-shapes) that had reliability information available for at least 

one of the interacting variables. Ultimately, we identified 656 moderation effects in 293 

studies in 164 articles, for an average of 4 (Med = 2; Mo = 1; SD = 4.41; range = 1-30) 

effects per article. This procedure selected about 13% of all published 2015-2019 articles in 

JMR, 19% of JM, 24% of JCR, and 1% of Mark. Sci., an overall 14% across focal outlets and 

years. Thus, moderation effects in face of measurement error are widespread in contemporary 

marketing research. Table WA1 has a detailed breakdown across outlets and volumes. The 

OSF repository has a full list of the 164 focal articles. 

How widely are the six methods for moderation analysis used? Table WA2 shows that 

154 (94%) out of the 164 articles used means. Thus, the vast majority of moderation effect 

estimations did not fully account for measurement error, despite unreliability information 

being available for at least one of the interacting variables. Four articles used multi-group, of 

which all used naturally categorical variables as grouping variable, such as a manipulation in 

Study 2 of Reinholtz et al. (2015), or followed the multi-group analysis up with an analysis of 

continuous interaction. Thus, moderation articles followed the advice of Irwin and 
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McClelland (2001, 2003) to avoid the discretization of continuous variables, which is good. 

One article (Katsikeas et al. 2018) used (Study 1) corrected means to estimate an interaction 

between exploitative and explorative learning (both 3 indicators, reliability = .84) and 

decision making complexity on performance (7 formative indicators) among 378 salespeople. 

Only seven articles used factor scores. For instance, Wathne et al. (2018) investigated how 

the effect of supplier incremental investments (3 indicators, reliability = .90) on ex-post 

transaction costs (7 indicators, reliability = .94) was moderated by reseller selection efforts (6 

indicators, reliability = .93) in a sample of 100 resellers and supplier pairs in the building 

materials industry. This study used factor scores for all the multi-indicator scales (p. 709). 

Fürst et al. (2017) studied the effect of multichannel task differentiation (4 indicators, 

reliability = .82) on multichannel horizontal conflict (3 indicators, reliability = .88) among 

329 key informants, and how it is moderated by customer cross-channel buying (4 indicators, 

reliability = .86). It is the only article in our sample that used product indicators, and it used 

four pairs as recommended by Marsh et al. (2004). Auh et al. (2019) studied several 

moderators of the relationship between customer participation (5 indicators, reliability = .89) 

and satisfaction (4 indicators, reliability = .93) effect. For instance, a latent product analysis 

(Klein and Moosbrugger 2000) among 891 customer-banker pairs found support for a 

negative moderation of customer orientation (5 indicators, reliability = .88). In sum, 

moderation tests that fully account for measurement error to estimate the moderation effect 

are rare in our sample.  

The median study sample size is 202, quite close to the mean of 183 in a recent 

review of mediation analyses in volumes 41 and 42 (2014-2016) of JCR (Pieters 2017). The 

25% and 75% percentiles of the sample size are respectively 129 and 329. 
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Table WA1 

Literature Review: Article Outlet and Publication Year  

 

Outlet 
Publication year 

(volume & issues) 

Total # of 

articles 

# of focal 

articles 

% focal out 

of total 

     

JMR 2019 (56-1 to 56-6) 60 11 18% 

 2018 (55-1 to 55-6) 60 11 18% 

 2017 (54-1 to 54-6) 64 6 9% 

 2016 (53-1 to 53-6) 67 7 10% 

 2015 (52-1 to 52-6) 58 4 7% 

 Total 309 39 13% 

     

JM 2019 (83-1 to 83-6) 48 12 25% 

 2018 (82-1 to 82-6) 51 9 18% 

 2017 (81-1 to 81-6) 48 8 17% 

 2016 (80-1 to 80-6) 42 9 21% 

 2015 (79-1 to 79-6) 37 5 14% 

 Total 226 43 19% 

     

JCR 2019 (45-5 to 46-4) 68 19 28% 

 2018 (44-5 to 45-4) 70 18 26% 

 2017 (43-5 to 44-4) 79 11 14% 

 2016 (42-5 to 43-4) 60 14 23% 

 2015 (41-5 to 42-4) 58 18 31% 

 Total 335 80 24% 

     

Mark. Sci. 2019 (38-1 to 38-6) 52 1 2% 

 2018 (37-1 to 37-6) 53 0 0% 

 2017 (36-1 to 36-6) 55 0 0% 

 2016 (35-1 to 35-6) 55 0 0% 

 2015 (34-1 to 34-6) 59 1 2% 

 Total 274 2 1% 

     

Total  1,144 164 14% 

     

 

Notes: JMR is the Journal of Marketing Research, JM is the Journal of 

Marketing, JCR is the Journal of Consumer Reseach and Mark. Sci. is 

Marketing Science. Total # of articles is based on a Web of Science search with 

query “SO = (‘Journal of Marketing’ OR ‘Journal of Marketing Research’ OR 

‘Journal of Consumer Research’ OR ‘Marketing Science’) AND PY = 2015-

2019”. Percentages across outlets are 13%, 13%, 10%, 16% and 19% for 2015-

2019 respectively. 



54 

 

  
Table WA2 

Literature Review of 656 Moderation Analyses in Four Marketing Outlets 2015-2019  
Category Result 

Articles  

Number of articles 164 

Multi-group method  4 (2%) 

Means method  154 (94%) 

Corrected means method  1 (1%) 

Factor scores method  7 (4%) 

Product indicators method  1 (1%) 

Latent product method  1 (1%) 

  

Studies  

Number of studies 293 

Sample size M = 5,581; Mdn = 202 (SD = 57,493; range = 37-951,819) 

  

Moderation effects  

Number of moderation effects 656 

Test of a moderation hypothesis  637 (97%) 

Test of a U-shape hypothesis  19 (3%) 

Measured X and Z  266 (41%) 

Manipulated X or Z  390 (59%) 

  

Effect sizes & correlations  

Effect size of the main effects (344 out of 1,312 effects)  M = .20; Mw = .21; Mdn = .16 (SD = .17; range = 0-.84) 

Effect size of the moderation effect (495 out of 656 effects) M = .17; Mw = .08; Mdn = .15 (SD = .13; range = 0-.87) 

Correlation X with Z (150 out of 247 effects) M = .17; Mw = .15; Mdn = .10 (SD = .16; range = 0-.67) 

  

Explanatory variables (X or Z) 1,312 

Manipulated X or Z (1,312 out of 1,312 variables) 390 (30%) 

Measured X or Z (1,312 out of 1,312 variables) 922 (70%) 

Measure reliability of X or Z (767 out of 922 variables) M = .88; Mw = .86; Mdn = .87 (SD = .10; range = .45-.99) 

Number of indicators of X or Z (914 out of 922 variables) M = 6.71; Mdn = 4; Mo = 3 (SD = 10.61; range = 1-169) 

Continuous x or z (919 out of 922 variables) 120 (13%) 

Categorical x or z (919 out of 922 variables) 799 (87%) 

Number of scale points of x or z (779 out of 799 variables) M = 7.67; Mdn = 7; Mo = 7 (SD = 10.72; range = 2-101) 

  

Outcome variables (Y) 656 

Measure reliability of Y (266 out of 656 variables) M = .90; Mw = .87; Mdn = .90 (SD = .08; range = .51-.98) 

Number of indicators of Y (504 out of 656 variables) M = 2.41; Mdn = 1; Mo = 1 (SD = 2.14; range = 1-13) 

Continuous y (653 out of 656 variables) 208 (32%) 

Categorical y (653 out of 656 variables) 445 (68%) 

Number of scale points of y (430 out of 445 variables) M = 11.47; Mdn = 7; Mo = 7 (SD = 22.5; range = 2-200) 

 

Notes: Literature review of moderation analyses in the 2015-2019 volumes of Journal of Marketing Research (JMR), Journal of 

Marketing (JM), Journal of Consumer Research (JCR) and Marketing Science (Mark. Sci.). Percentages may not sum to 100% 

due to rounding or use of multiple methods within an article. The numbers in parentheses in the first column denote the number 

of articles, studies, effects, or variables that the corresponding statistics in the remaining columns are based on. Discrepancies 

manifest because some statistics could not always be unequivocally determined from study descriptions. Effect sizes are 

correlations (r) and are based on absolute values of zero-order correlations, and on transformed test-statistics (t, z, χ2 or F) if zero-

order correlations were not available (Rosenthal and DiMatteo 2001). Means of effect sizes, correlations and reliabilities are 

based on Fisher-Z-transformed values. Weighted means use √n − 3 weights, the inverse standard error of Fisher-Z (where n is 

the sample size). M is the mean, Mw is the weighted mean, Mdn is the median, Mo is the mode, and SD is the standard deviation. 
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In our sample, 637 (97%) out of the 656 interaction effects tested moderation 

hypotheses (i.e., the effect of XZ). The remaining 19 (3%) tested U-shape (e.g., a quadratic 

effect X2) hypotheses (Haans et al. 2016). Thus, U-shapes are relatively rare. Moderation 

effects with measured variables were common, 266 (41%) out of 656 effects. The remainder 

had moderation of a measured variable with a manipulation (59%).  

We also document the size of the moderation effects, as well as properties of the 

measures. Reported zero-order correlations determined effect sizes for main effects. Meta-

analysis estimated the mean reliabilities and correlations. We transformed reliabilities and 

correlations to Fisher-Z-values, took the mean, and back-transformed it to a meta-analytic 

mean correlation or reliability. Table WA2 reports simple and weighted means, which use the 

inverse of the standard error of the Z-values √n − 3 as weights, where n is the sample size, 

giving more weight to observations from larger studies. The mean absolute effect size is r = 

.20, which is a small-to-medium effect (Cohen 1988) and slightly lower than the mean effect 

size of .24 found in a meta-analysis of meta-analyses in marketing (Eisend 2015). Because 

correlations between interaction terms and Y are uncommonly reported, we transformed 

exact t- z- χ2- and F-statistics when correlations were unavailable (Rosenthal and DiMatteo 

2001). The mean effect size is r = .17, again a small-to-medium effect (Cohen 1988). The 

magnitudes are consistent with the conventional wisdom that moderation effect sizes are 

smaller than main effects (Aguinis et al. 2005; Eisend 2015).  

The measured explanatory variables (922 out of 1,312 X and Z variables) had a mean 

reliability of .88, which is good to excellent (Peterson 1994) and in line with Pieters (2017), 

but substantively higher than the mean of .77 found in an early meta-analysis (Peterson 

1994). Three indicators were most common, with a mean 6.71 and a median number of four. 

Categorical indicators (87%) most commonly used seven-point scales (62% at the mode). 

The outcome variable Y had an excellent mean reliability of .90 (Peterson 1994). It had a 
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mean 2.41 indicators, similar to the mean of 2.28 found by Pieters (2017), but was most 

commonly measured with a single-indicator (54%). Outcomes were usually categorical (445 

out of 656 variables, 68%). These measures most commonly used seven-point scales (53% at 

the mode). 

Out of the 1,003 non-manipulated, multi-indicator Y, X and Z measures for which 

information on the measurement could be unequivocally determined, 822 (82%) reported a 

Cronbach’s alpha (or a correlation that we transformed to an alpha estimate) without specific 

tests whether indicators are equally good, and 948 (95%) used equal weighting to create a 

mean composite. The remainder used composite reliability estimates that account for unequal 

weighting (Fornell and Larcker 1981; Raykov 1997). 
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Web Appendix B: Example code 

Table WA3 has an overview of example code to implement the methods, available on OSF: 

https://osf.io/py7jx/?view_only=5d921a6658cf402a80bd1d4996665331. 

Table WA3 

Overview of Example Code 

 

  Implementation 

Model  Method SPSS Stata R-lavaan R-nlsem Mplus 

Model 1: 

Latent X with 3 continuous indicators 

Latent Z with 3 continuous indicators 

Latent Y with 3 continuous indicators 

 

 

1. Multi-

group 
 ✓ ✓  ✓ 

2. Means ✓ ✓ ✓  ✓ 

3. Corrected 

means 
 ✓ ✓  ✓ 

4. Factor 

scores 
 ✓ ✓   

5. Product 

indicators 
 ✓ ✓  ✓ 

6. Latent 

product 
   ✓ ✓ 

     

Model 2: 

Latent X with 3 continuous indicators 

Manifest discrete (binary) Z 

Latent Y with 3 continuous indicators 

 

1. Multi-

group 
 ✓ ✓  ✓ 

2. Means ✓ ✓ ✓  ✓ 

3. Corrected 

means 
 ✓ ✓  ✓ 

4. Factor 

scores 
✓ ✓ ✓   

5. Product 

indicators 
 ✓ ✓  ✓ 

6. Latent 

product 
    ✓ 

     

https://osf.io/py7jx/?‌view_only=‌5d921a6658cf402a80bd1d4996665331
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Table WA3 (CONTINUED) 

      

  Implementation 

Model  Method SPSS Stata R-lavaan R-nlsem Mplus 

Model 3: 

Latent X with 3 continuous indicators 

Manifest discrete (binary) Z 

Manifest continuous Y 

 

1. Multi-

group 
 ✓ ✓  ✓ 

2. Means ✓ ✓ ✓  ✓ 

3. Corrected 

means 
 ✓ ✓  ✓ 

4. Factor 

scores 
✓ ✓ ✓  ✓ 

5. Product 

indicators 
 ✓ ✓  ✓ 

6. Latent 

product 
    ✓ 

 

    

 

Note: Method availability and non-availability in statistical software are denoted by ✓ and  respectively. Available code can be accessed 

on OSF: https://osf.io/py7jx/?view_only=5d921a6658cf402a80bd1d4996665331. 

 

  

https://osf.io/py7jx/?view_only=5d921a6658cf402a80bd1d4996665331
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Web Appendix C: Factor scores method 

Factor score estimators 

Latent variables are unobservable, but they can be estimated with factor scores. There are 

multiple ways to estimate factor scores. Yet, the choice of factor scores matters because of 

their different properties. Three types of factor scores are dominant (DiStefano et al. 2009; 

Lastovicka and Thamodaran 1991). A first factor score estimator is the regression method 

(Lastovicka and Thamodaran 1991, Equation 5). In regression terminology, the dependent 

variable is the factor score to be estimated, the independent variable is the matrix of observed 

indicator data and the regression parameters are the estimated correlation between the 

indicators and the latent factors. Thus, the regression factor scores minimizes the sum of 

squares of factor scores with the true scores; or in other words, it maximizes the estimated 

correlation between the indicators and the factors. It essentially optimally weights the 

indicator data by the loading weights and does not use the measurement error estimates (see 

Bartlett scores below). The variance of regression factor scores is therefore the estimated 

proportion of variance extracted by the factor from the items, which is equal to the estimated 

reliability or 𝜌 if the variance of the factor is one (Yuan et al. 2020, p. 338). Formally: 

where 𝐷 is a matrix of indicator-level data that is multiplied by the inverse of the observed 

covariance matrix 𝛴(𝑜)
−1, the matrix of estimated loadings 𝛬 and the estimated variance 

covariance matrix of the latent variables 𝛷. 

 A second factor score estimator is the Bartlett method (Lastovicka and Thamodaran 

1991, Equation 3) that is similarly based on a regression solution, but weighted by the 

measurement error variances. Holding the loadings equal, it weights indicators with a small 

amount of measurement error more than it weights indicators with a large amount of 

measurement error. Formally:  

(W1) 𝐹̂𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝐷𝛴(𝑜)
−1𝛬𝛷, 
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This estimator minimizes the sum of squares for the unique factors. It is the optimal linear 

combination of the indicators with maximal reliability, for instance in the case of three 

indicators for 𝑋, for observation 𝑖: 

Hence, the factor score variance is 𝜙/𝜌, or the inverse of the factor reliability if the variance 

of the factor is one such that Bartlett scores have the same scale as mean scores (Yuan and 

Deng 2021, Equation 7).  

A third factor scores estimator is the Anderson-Rubin method (Lastovicka and 

Thamodaran 1991, Equation 6). It builds on the Bartlett estimator to obtain factor scores that 

are uncorrelated and standardized (Lastovicka and Thamodaran 1991). It is: 

Factor score regression with Bartlett (𝑌) and regression (𝑋 & 𝑍) scores 

As explained in the main text, the challenge is to use the indicators to estimate the main and 

moderation effects of X and Z. Bias in the variance of 𝑌 due to measurement error does not 

directly bias estimates but underestimates the coefficient of determination 𝑅2 (Wooldridge 

2015). Because the factor score estimators presented above have different properties, their 

estimates of the moderation effects also differ. Anderson-Rubin scores cannot be used for 

factor score regression because the factor scores are orthogonal and can therefore not recover 

non-zero covariances between 𝑌 and the predictors (Lastovicka and Thamodaran 1991). 

However, we implement the results from Skrondal and Laake (2001) and Devlieger et al. 

(2016) in the latent moderation setting. These studies have shown that regression parameters 

in non-moderation models can be recovered if Bartlett factor scores are used for the outcome 

(W2) 𝐹̂𝐵𝑎𝑟𝑡𝑙𝑒𝑡𝑡 = 𝐷𝛩−2𝛬(𝛬𝑇𝛩−2𝛬)−1, 

(W3) 𝐹̂𝐵𝑎𝑟𝑡𝑙𝑒𝑡𝑡,𝑖 =
𝜆𝑥1

𝜎𝑥1,𝑥1
𝑥1,𝑖 +

𝜆𝑥2

𝜎𝑥2,𝑥2
𝑥2,𝑖 +

𝜆𝑥3

𝜎𝑥3,𝑥3
𝑥3,𝑖. 

(W4) 𝐹̂𝐴𝑛𝑑𝑒𝑟𝑠𝑜𝑛−𝑅𝑢𝑏𝑖𝑛 = 𝐷𝛩−2𝛬(𝛬𝑇𝛩−2𝛴(𝑜)𝛩
−2𝛬)−1/2. 



61 

variable (here 𝑌̂) and regression factor scores from a 2-CFA are used for the predictors (here 

𝑋̂ and 𝑍̂). The main text elaborates on this.  

 Using Bartlett scores corrects for unreliability in 𝑌. The use of regression scores 

corrects for unreliability in the predictors. Therefore, the properties of both factor score 

estimators are combined to account for unreliability in all variables. Like in the main text, 

assuming that 𝑌, 𝑋 and 𝑍 are normally distributed, that 𝑋 and 𝑍 are uncorrelated and that 

Bartlett factor scores are used for 𝑌 and regression scores for 𝑋 and 𝑍 (and analogous for 𝛽1 

and 𝛽2): 

here, both the variance of 𝑋𝑍 and its covariance with 𝑌 are attenuated by 𝜌𝑋𝑍, which cancels 

out to estimate 𝛽3 (Devlieger et al. 2016). Importantly, the variances and covariances 

between the factor scores cannot be interpreted as estimates of the true variances and 

covariances (i.e., free of the impact of measurement error), but the regression estimate 𝛽3 

can.  

However, if Bartlett scores are used for both 𝑌 and 𝑋𝑍 (Devlieger et al. 2016):  

where the covariance between 𝑌 and 𝑋𝑍 is correctly estimated but the variance of 𝑋𝑍 is 

inflated by the inverse of the reliability. Thus, Bartlett scores only account for unreliability 

when used as a dependent variable. Similarly, if regression scores are used for both 𝑌 and 

𝑋𝑍: 

where the covariance between 𝑌 and 𝑋𝑍 is attenuated by the reliabilities of both 𝑌 and 𝑋𝑍, 

and the variance of 𝑋𝑍 is attenuated by 𝜌. Thus, regression scores only account for 

(W5) 𝛽̂3,𝐵𝑎𝑟𝑡𝑙𝑒𝑡𝑡−𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
𝜌𝑋𝑍∗𝜙𝑌,𝑋𝑍

𝜌𝑋𝑍∗𝜙𝑋𝑍,𝑋𝑍
= 𝛽3. 

(W6) 𝛽̂3,𝐵𝑎𝑟𝑡𝑙𝑒𝑡𝑡−𝐵𝑎𝑟𝑡𝑙𝑒𝑡𝑡 =
𝜙𝑌,𝑋𝑍

𝜙𝑋𝑍,𝑋𝑍∗
1

𝜌𝑋𝑍

= 𝛽3 ∗ 𝜌𝑋𝑍, 

(W7) 𝛽̂3,𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛−𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
𝜙𝑌,𝑋𝑍∗𝜌𝑋𝑍∗𝜌𝑌

𝜙𝑋𝑍,𝑋𝑍∗𝜌𝑋𝑍
= 𝛽3 ∗ 𝜌𝑌, 
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unreliability when used as an predictor. In sum, the true main effects and the moderation 

effect are only recovered when the indicators do not contain measurement error (i.e., all 𝜌 = 

1) or when Bartlett scores for the outcome and regression scores for the predictors are used.  

Factor score (moderated) mediation 

One limitation of factor score regression with Bartlett scores for 𝑌 and regression factor 

scores for the predictors is that it requires determining a priori which of the variables are 

outcomes and which are predictors (Devlieger et al. 2016, pp. 747 & 763). One situation in 

which this might occur is a theory of (moderated) mediation. In that case, the mediator 𝑀 is 

both an outcome and a predictor (in the equation for 𝑌).  

The mediation model, omitting intercepts and moderation for brevity, is: 

with 𝜁𝑀 ∼ 𝑁(0, 𝜎𝜁𝑀

2 ) and 𝜁𝑌 ∼ 𝑁(0, 𝜎𝜁𝑌

2 ). Commonly, the analyst is interested in a 

decomposition of the total effect of 𝑋 on 𝑌 𝑐 = 𝑎 ∗ 𝑏 + 𝑐𝑝 in an indirect (or mediation) effect 

𝑎 ∗ 𝑏 and a conditional (on 𝑀) direct effect 𝑐𝑝 (Pieters 2017). Thus, if 𝑎, 𝑏 and 𝑐𝑝 can be 

estimated accurately, the focal total, indirect and direct effects of 𝑋 on 𝑌 are also accurately 

estimated. A possible solution is to estimate both Bartlett and regression factor scores for 𝑀. 

For brevity, we focus on a non-moderated mediation model, but the results extend to 

moderated mediation.  

For the 𝑀-equation, using Bartlett factor scores for 𝑀 and regression scores for 𝑋 

accurately estimates 𝑎. For the 𝑌-equation, Bartlett factor scores for 𝑌 and regression scores 

from a 2CFA of 𝑀 and 𝑋 accurately estimate 𝑏 and 𝑐𝑝. The factor scores mediation model, 

using subscripts to indicate the type of factor scores, becomes:  

(W8) 𝑀 = 𝑎 ∗ 𝑋 + 𝜁𝑀, 

(W9) 𝑌 = 𝑏 ∗ 𝑀 + 𝑐𝑝 ∗ 𝑋 + 𝜁𝑌, 
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Step 1 then estimates three factor analyses. Factor analysis one is a factor analysis of 

𝑀 (1-CFA) on its indicators of which Bartlett scores are estimated. These factor scores are 

entered as the outcome in the 𝑀-equation. Factor analysis two is a factor analysis of 𝑋 (1-

CFA) on its indicators from which factorwise regression factor scores are estimated; these 

serve as the predictor in the 𝑀-equation. Factor analysis three is a 2-CFA (blockwise) of 𝑀 

and 𝑋 on their respective indicators because they enter both in the 𝑌-equation. The regression 

factor scores of 𝑀 and 𝑋 enter as predictors in Equation (W11). Step 2 simultaneously or 

separately estimates the two factor score regressions. 

 The code available on OSF gives an example of this estimation technique for a 

moderated mediation model in R (R Core Team 2020) with the factor scores method. For 

comparison, it also implements the moderated mediation model in Mplus (latent product 

method) that estimates the measurement models with the structural mediation model 

simultaneously. 

  

(W10) 𝑀𝐵𝑎𝑟𝑡𝑙𝑒𝑡𝑡 = 𝑎 ∗ 𝑋𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛,𝑓𝑎𝑐𝑡𝑜𝑟𝑤𝑖𝑠𝑒 + 𝜁𝑀, 

(W11) 𝑌𝐵𝑎𝑟𝑡𝑙𝑒𝑡𝑡 = 𝑏 ∗ 𝑀𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛,𝑏𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 + 𝑐𝑝 ∗ 𝑋𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛,𝑏𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 + 𝜁𝑌. 



64 

Web Appendix D: Non-normality 

The latent product method estimates the moderation effect by using the latent product of 𝑋 

and 𝑍 (Klein and Moosbrugger 2000). It is a distribution analytic approach, i.e., based on an 

analysis of the indicator distribution (Kelava et al. 2011) instead of the covariance matrix, 

like the other methods. The latent product method is motivated by the finding that 𝑌 and its 

indicators are non-normally distributed if there is a true moderation effect, even if 𝑋 and 𝑍 

are normally distributed (Kenny and Judd 1984; Klein and Moosbrugger 2000; Moosbrugger 

et al. 1997). None of the methods except for the latent product method account for this 

feature in the data. The latent product method was developed to take the non-normality in 𝑌 

into account, while maintaining the assumption of normally distributed indicators of 𝑋 and 𝑍 

(Klein and Moosbrugger 2000). 

The non-normality in moderation models follows from the properties of products of 

distributions. That is, even if 𝑋 and 𝑍 are normally distributed, a product of normally 

distributed variables is usually not normally distributed (Aroian 1947; Oliveira et al. 2016). 

The univariate skewness and excess kurtosis of the distribution are conventional metrics for 

the degree of (non-)normality of a distribution. Both are zero for normally distributed 

variables. Skewness implies asymmetry of the distribution. For example, negative skewness 

in a satisfaction distribution reflects that customers are generally satisfied and not dissatisfied 

(vice versa for positive skewness) with the products they purchase and consume (Peterson 

and Wilson 1992). A positive (negative) excess kurtosis reflects a higher (lower) likelihood 

that there are extreme observations in the tails of the distribution than there would be in a 

normal distribution.  

 To visualize this non-normal distribution, Panel A in Figure WA1 (code is available 

on OSF) visualizes (solid line) a simulated (n = 100,000) density of 𝑋 ∗ 𝑍 with 𝑋 and 𝑍 being 

standard normally distributed with a .20 correlation. The dashed line represents the normal 
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distribution with the same mean and standard deviation as 𝑋 ∗ 𝑍. The figure shows that the 

product of 𝑋 and 𝑍 is skewed (estimated skewness about 1.13) and has excess kurtosis 

(estimated kurtosis about 6.57), even though both 𝑋 and 𝑍 are standard normally distributed 

(skewness and excess kurtosis both zero).  

The degree of non-normality of a product of normal distributions is a complex 

function of the means and standard deviations of the distributions, and the correlations 

between them (Oliveira et al. 2016, Equations 3-6). To illustrate the non-normality of product 

terms in the current setting, we focus on the situation where 𝑋 and 𝑍 are standard normally 

distributed. The mean of 𝑋 ∗ 𝑍 is 𝜙𝑋,𝑍 (the correlation of 𝑋 with 𝑍), the variance is 1 + 𝜙𝑋,𝑍
2  

and the skewness and excess kurtosis are (Oliveira et al. 2016, Equations 3-6): 

Figure WA2 plots the skewness and kurtosis of 𝑋𝑍 as a function of 𝜙𝑋,𝑍
2  (code is available on 

OSF). Both are positive and increase when the absolute value of the correlation increases. 

When the correlation is one, the skewness is about five, while the excess kurtosis is nine. 

Even when 𝑋 and 𝑍 are uncorrelated, the excess kurtosis is three, the minimum, while the 

skewness is zero. Thus, even when standard normally distributed 𝑋 and 𝑍 are uncorrelated, 

their product is non-normally distributed. If they are correlated, the extent of non-normality is 

stronger for a higher correlation of 𝑋 with 𝑍. 

(W12) 𝑆𝑘𝑒𝑤𝑋𝑍 =
2∗𝜙𝑋,𝑍∗(3+𝜙𝑋,𝑍

2 )

(1+𝜙𝑋,𝑍
2 )

2/3 , 

(W13) 𝐾𝑢𝑟𝑡𝑋𝑍 =
6∗(1+6∗𝜙𝑋,𝑍

2 +𝜙𝑋,𝑍
4 )

(1+𝜙𝑋,𝑍
2 )

2 . 
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Figure WA1 

Y is Non-Normally Distributed if There is a True Moderation Effect 

 

 Panel A: density of X*Z for normal 

X & Z 

Panel B: density of Y for normal X 

& Z (𝛽3 = 0) 

Panel C: density of Y for normal X 

& Z (𝛽3 = .20) 

Panel D: density of Y for normal X 

& Z (𝛽3 = .80) 

Normal X & Z 

(skewness = 0 & 

excess kurtosis = 0) 

    

 Panel E: density of X*Z for non-

normal X & Z 

Panel F: density of Y for non-

normal X & Z (𝛽3 = 0) 

Panel G: density of Y for non-

normal X & Z (𝛽3 = .20) 

Panel H: density of Y for non-

normal X & Z (𝛽3 = .80) 

Non-normal X & Z 

(skewness = 2 & 

excess kurtosis = 7) 

    

Notes: Solid lines are densities of X*Z or Y, where X and Z are simulated (n = 100,000) standard normally distributed with a .20 correlation and main effects 𝛽1 and 𝛽2 are 

.20. Dashed lines are densities of the normal distribution with the same mean and standard deviation of X*Z or Y.  
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 Because 𝑌 (Equation 1 in the main text) is a weighted (by 𝛽) function of two normally 

distributed variables (𝑋 and 𝑍) and one typically non-normally distributed variable (𝑋 ∗ 𝑍), 𝑌 

is also non-normally distributed if there is a true moderation effect. The extent of non-

normality in 𝑌 depends on the non-normality of the product but also the strength of the 

moderation effect. To demonstrate this, Panels B to D in Figure WA1 build on Panel A. If the 

true moderation effect is zero (Panel B), or .20 (Panel C), about average (see Table 1 in the 

main text), the distribution of 𝑌 remains approximately normally distributed. However, if the 

moderation effect is very large, here .80 (Panel D), the distribution of 𝑌 also becomes more 

non-normal (estimated skewness and kurtosis are respectively about .91 and 3.93 here). In 

sum, 𝑌 and its indicators are also non-normally distributed if there is a non-zero moderation 

effect and even if 𝑋, 𝑍 and 𝜁 are normally distributed. Thus, if there is a true moderation 

effect: 

 Non-normality in 𝑋 and 𝑍 is also further exacerbated by the product term. To 

illustrate this, we generate data under the same conditions as before, but now with 𝑋 and 𝑍 

having skewness of 2 and excess kurtosis of 7, which represent levels of non-normality that 

lead to issues with maximum likelihood estimation such as parameter and standard error bias 

(Finney and DiStefano 2006, p. 442). The distribution of 𝑋 ∗ 𝑍 (Panel E in Figure WA1) is 

even more peaked (estimated skewness is about 7 and excess kurtosis almost 100) than that in 

Panel A, which also results in a more non-normal 𝑌 the stronger the moderation effect 

becomes (Panels F-H). In sum, non-normality in 𝑌 is exacerbated by non-normality in 𝑋 and 

𝑍 (and if non-normal, for stronger main effects 𝛽1 and 𝛽2), for stronger moderation effects 

(𝛽3) and for higher correlations between 𝑋 and 𝑍.  

 Nevertheless, the multi-group, corrected means, factor scores and product indicators 

methods use a measurement model for 𝑌 and therefore assume that 𝑌 is normally distributed 

(W14) 𝑌 ≁ 𝑀𝑉𝑁(𝜇, 𝛴). 
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(Bollen 1989; Finney and DiStefano 2006, p. 441). Previous research concluded that 

skewness and excess kurtosis in variables lead to overestimated zero-order correlations 

(Bishara and Hittner 2015). We would therefore expect inflated main and moderation effects. 

Larger levels of kurtosis might also bias standard errors downward (Finney and DiStefano 

2006, p. 444). It is however unclear to what extent this leads to bias in settings that are 

common in the literature review. For instance, effect sizes are commonly small-to-medium, 

about .20 or smaller (see Table 1 in the main text). Study 1 in the main text investigates this. 

 

Figure WA2 

Skewness and Kurtosis of a Product of Standard Normally Distributed Variables 

Increase if their Correlation Increases 
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Web Appendix E: Latent product method 

Mixture approximation 

The latent product method accounts for the non-normality in 𝑌 and its indicators by directly 

fitting the multivariate distribution of the indicators instead of their covariance matrix (Klein 

and Moosbrugger 2000). The challenge of approximating the indicator distribution is to take 

the non-normality due to the interaction into account. Klein and Moosbrugger (2000) 

proposed that the non-normal distribution of 𝑌 can be approximated by a finite mixture of 

normally distributed variables. The finite mixture is a tool to approximate the non-normal 

distribution with multiple tractable normal distributions. The number of distributions or 

mixture components must be fixed prior to estimation and represents a tradeoff between 

accuracy and computational intensiveness. 

Figure WA3 illustrates the use of a mixture of normal distributions to approximate the 

non-normal distribution of 𝑌. Code is available on OSF. Panel A visualizes a simulated (n = 

100,000) density of 𝑌 with 𝑋 and 𝑍 standard normally distributed with a .50 correlation, main 

effects of .20 and a moderation effect of .80. Panel B approximates this non-normal density 

(solid line) with a single normal distribution (dashed line) that has the same mean and 

standard deviation. Clearly, and intuitively, the normal distribution inaccurately approximates 

the non-normal distribution of 𝑌: the non-normal distribution is more peaked and skewed to 

the left than the normal distribution is.  

Panel C visualizes two normally distributed components to approximate 𝑌 and Panel 

D has the mixture density, the sum of both densities. Using a mixture density with two 

components already fits the non-normal 𝑌 better, although some deviations persist, like in the 

peak and right tail of the distribution. Panels E and F visualize a four-component mixture 

distribution. Here, the joint mixture density (dashed line in Panel F) almost perfectly overlaps 

the distribution of 𝑌. Generally, the more components, the better the distribution of 𝑌 can be 
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approximated, which fosters estimation accuracy but is more computationally intensive. 

Klein and Moosbrugger (2000, p. 465) recommend 16 mixture components for adequate 

approximation of the non-normal indicator distribution in moderation analyses with a single 

interaction, as is the focal case here. A follow-up study further explores this. 

In sum, the key idea of the latent product method is to directly approximate the non-

normal 𝑌 distribution due to the interaction. It uses a mixture of normal distributions to do so. 

We now turn to the mathematical background. 

Model specification 

The derivation of the result that the non-normal indicator distribution can be represented by a 

mixture distribution is based on the finding that the distribution is multivariate normal if it is 

conditioned on the components of the interaction (Moosbrugger et al. 1997). To illustrate 

this, rearrange Equation (1) in the main text:  

When holding 𝑋 at a fixed value (and analogous for 𝑍), the effect of 𝑍 on 𝑌 is a linear 

function of 𝑍, such that 𝑌 is a (weighted, by 𝛽) sum of normally distributed variables only 

and therefore also normally distributed (Moosbrugger et al. 1997).  

Klein and Moosbrugger (2000) show that if a vector 𝑐 is used as a conditioning 

variable, which is a rescaled (by 𝜙) vector of standard normal distributions to represent 𝑋 and 

𝑍, the conditional indicator distribution is normally distributed: 

where the implied (i) mean vector 𝜇 and covariance matrix 𝛴 are complex functions of 𝑐 and 

the model to be estimated in Equations (1)-(2) in the main text. They are provided by 

Equations (18)-(22) in Klein and Moosbrugger (2000) and by Equations (8)-(12) in 

Schermelleh-Engel et al. (1998) for the special case of an observed 𝑌 and two indicators for 

𝑋 and 𝑍.  

(W15) 𝑌 = (𝛽1 + 𝛽3 ∗ 𝑍) ∗ 𝑋 + 𝛽2 ∗ 𝑍 + 𝜁. 

(W16) (𝑦, 𝑥, 𝑧|𝑐) ∼ 𝑀𝑉𝑁(𝜇(𝑖), 𝛴(𝑖)), 
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Using the product rule of conditional distributions, the indicator distribution can then 

be represented as the product of the distributions of 𝑐 and the conditional distribution (Klein 

& Moosbrugger 2000, Equation 15): 

where 𝜑 is the standardized normal density. The integral in Equation (W17) represents a 

mixture of normal densities (Klein and Moosbrugger 2000). 

 To summarize, the latent product method is a distribution analytic approach, a direct 

analysis of the indicator distribution of 𝑌, 𝑋 and 𝑍. Instead of the observed covariance 

matrix, it requires the raw data of the indicators. Although the distribution of 𝑌 is non-

normally distributed if there is a true moderation effect, it is normally distributed when 

conditioning on 𝑋 and 𝑍. The latent product method utilizes this property to derive the 

distribution of the indicators. 

Model estimation 

Although the integral in Equation (W17) cannot be solved analytically (Klein and 

Moosbrugger 2000, p. 464), it can be approximated by a finite mixture of 𝐾 normal densities. 

Here, the finite mixture is a weighted sum of normal distributions to approximate the non-

normal indicator distribution. The weights are derived analytically and do not have to be 

estimated (Klein and Moosbrugger 2000). However, the number of mixture components 𝐾 

has to be fixed which represents a tradeoff between accuracy and computational 

intensiveness. Formally, the finite mixture distribution is (Klein & Moosbrugger 2000, 

Equation 29): 

which is a weighted sum of 𝐾 mixture components. Then 𝑤s are the analytically derived 

mixture weights (Klein and Moosbrugger 2000).  

The log-likelihood is: 

(W17) 𝑓(𝑦 = 𝑦, 𝑥 = 𝑥, 𝑧 = 𝑧) = ∫ 𝜑(0,1)(𝑐)𝜑(𝜇(𝑖), 𝛴(𝑖))(𝑦, 𝑥, 𝑧)d𝑐, 

(W18) 𝑓(𝑦 = 𝑦, 𝑥 = 𝑥, 𝑧 = 𝑧) = ∑ 𝑤𝑗
𝐾
𝑗=1 𝜑(𝜇𝑗, 𝛴𝑗)(𝑦, 𝑥, 𝑧), 
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In mixture models, each observation 𝑖 has a probability 𝑃𝑖𝑗 to belong to each (𝑗) of the 𝐾 

mixture components (segments). These probabilities and the set of parameters to be estimated 

(𝜃) are not jointly identified but they can be estimated if the other one is known. Therefore, 

the latent product method uses an expectation maximization (EM) algorithm for estimation 

(Dempster et al. 1977; Klein and Moosbrugger 2000), which is common when estimating 

parameters with mixture densities. EM proceeds in two iterative steps (Dempster et al. 1977).  

The expectation step of iteration 𝑟 of the EM algorithm (for the first iteration, the 

parameter vector 𝜃 is initialized with starting values) calculates the probabilities of the 

mixture component 𝑗 for observation 𝑖 (Klein & Moosbrugger 2000, Equation 30). Once 

estimates of the mixture probabilities are available, the parameter vector 𝜃(𝑟) can be updated 

with the likelihood in the maximization step (Klein & Moosbrugger 2000, Equation 31). The 

algorithm iterates back and forth between expectation (updating mixture probabilities based 

on the parameter estimates from the maximization step from the previous iteration) and 

maximization steps (updating the parameter estimates based on the posterior distribution of 

mixture probabilities) until convergence is attained (i.e., when the likelihood is maximized). 

Details are in Klein and Moosbrugger (2000) and Umbach et al. (2017). Henceforth, the 

algorithm converges to maximum likelihood estimates of the main and moderation effects 

(Dempster et al. 1977; Klein and Moosbrugger 2000). 

  

(W19) ln𝐿(𝜃) = ∑ ln (∑ 𝑤𝑗
𝐾
𝑗=1 𝜑(𝜇𝑗, 𝛴𝑗))

𝑁
𝑖=1 . 
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Figure WA3 

A Mixture of Normal Densities Approximates the Non-Normal Distribution of Y 

 

Panel A: density of Y 
Panel B: density of Y and approximation by 

normal distribution 

  

Panel C: density of Y and two normally 

distributed mixture components 

Panel D: density of Y and approximation by two 

normally distributed mixture components  

  

Panel E: density of Y and four normally 

distributed mixture components 

Panel F: density of Y and approximation by four 

normally distributed mixture components  

  

 

Notes: Solid lines are densities of Y, where X and Z are simulated (n = 100,000) standard normally 

distributed with a .50 correlation, main effects 𝛽1 and 𝛽2 are .20. and moderation effect 𝛽3 is .80. 

Panels C and E visualize normally distributed mixture components (non-solid lines) and panels B, D 

and F have the approximations of the density of 𝑌 of mixtures with one, two and four normally 

distributed mixture components.  
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Web Appendix F: Study 1 

Figure WA4 has performance criteria of the moderation effect for ten-fold cross validation. 

The material on OSF plots the performance criteria for the main effects. 

 

Figure WA4 

Study 1: Ten-Fold Cross-Validation Performance Criteria for the Moderation Effect (𝛽3) 

Panel A: Parameter bias of 𝛽3 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

Panel B: Standard error bias of 𝛽3 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 
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Figure WA4 (CONTINUED) 

 

Panel C: RMSE of 𝛽3 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

Panel D: Power of 𝛽3 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and power (as defined in Table 2 in 

the main text) of the moderation effect (𝛽3) across reliabilities of Y, X and Z. The sample sizes on the horizontal axes are on a log 

scale and indicate the sample sizes (90% for each fold) of the full estimation sample that is used to perform the ten-fold cross-

validation. Horizontal dashed lines indicate parameter bias, standard error bias and RMSE of zero and power of 80%. Vertical dashed 

lines indicate a sample size of 200, about the median in the literature review (Table 1 in the main text). 
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Web Appendix G: Study 2a 

Figure WA5 has detailed results. OSF has the performance criteria for the main effects.  

Figure WA5 

Study 2a: Performance Criteria for the Moderation Effect (𝛽3) 

 

Panel A: Parameter bias of 𝛽3 

Seven-point scales Five-point scales Three-point scales 

   

Panel B: Standard error bias of 𝛽3 

Seven-point scales Five-point scales Three-point scales 
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Figure WA5 (CONTINUED) 

 

Panel C: RMSE of 𝛽3 

Seven-point scales Five-point scales Three-point scales 

   

Panel D: Power of 𝛽3 

Seven-point scales Five-point scales Three-point scales 

   

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and power (as defined in Table 2 in 

the main text) of the moderation effect (𝛽3) across sample sizes (log scale) and the number of scale points. Horizontal dashed lines 

indicate parameter bias, standard error bias and RMSE of zero and power of 80%. Vertical dashed lines indicate a sample size of 200, 

about the median in the literature review (Table 1 in the main text). 
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Web Appendix H: Study 2b 

Figures WA6-8 have detailed results. 

 

 

  

Figure WA6 
Study 2b: Performance Criteria for the Moderation Effect (𝛽3) 

 

Panel A: Parameter bias of 𝛽3 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

Panel B: Standard error bias of 𝛽3 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 
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Figure WA6 (CONTINUED) 

 

Panel C: RMSE of 𝛽3 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

Panel D: Power of 𝛽3 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and power (as defined in Table 2 in 

the main text) of the moderation effect (𝛽3) across sample sizes (log scale) and reliabilities of Y, X and Z. Horizontal dashed lines 

indicate parameter bias, standard error bias and RMSE of zero and power of 80%. Vertical dashed lines indicate a sample size of 200, 

about the median in the literature review (Table 1 in the main text). 
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Figure WA7 

Study 2b: Performance Criteria for the Main Effect of X (𝛽1) 

 

Panel A: Parameter bias of 𝛽1 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

Panel B: Standard error bias of 𝛽1 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 
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Figure WA7 (CONTINUED) 

 

Panel C: RMSE of 𝛽1 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

Panel D: Power of 𝛽1 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and power (as defined in Table 2 in 

the main text) of the main effect of X (𝛽1) across sample sizes (log scale) and reliabilities of Y, X and Z. Horizontal dashed lines 

indicate parameter bias, standard error bias and RMSE of zero and power of 80%. Vertical dashed lines indicate a sample size of 200, 

about the median in the literature review (Table 1 in the main text).  
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Figure WA8 

Study 2b: Performance Criteria for the Main Effect of Z (𝛽2) 

 

Panel A: Parameter bias of 𝛽2 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

Panel B: Standard error bias of 𝛽2 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 
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Figure WA8 (CONTINUED) 

 

Panel C: RMSE of 𝛽2 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

Panel D: Power of 𝛽2 

Reliability of Y, X and Z is .75 Reliability of Y, X and Z is .85 Reliability of Y, X and Z is .95 

   

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and power (as defined in Table 2 in 

the main text) of the main effect of Z (𝛽2) across sample sizes (log scale) and reliabilities of Y, X and Z. Horizontal dashed lines 

indicate parameter bias, standard error bias and RMSE of zero and power of 80%. Vertical dashed lines indicate a sample size of 200, 

about the median in the literature review (Table 1 in the main text). 
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Web Appendix I: Study 2c 

Figures WA9-11 have detailed results. 

 

Figure WA9 

Study 2c: Performance Criteria for the Moderation Effect (𝛽3) 

 

Panel A: Parameter bias of 𝛽3 Panel B: Standard error bias of 𝛽3 Panel C: RMSE of 𝛽3 Panel D: Power of 𝛽3 

    

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and power (as defined in Table 2 in the main text) of the moderation effect (𝛽3) 

across sample sizes (log scale). Horizontal dashed lines indicate parameter bias, standard error bias and RMSE of zero and power of 80%. Vertical dashed lines indicate a sample 

size of 200, about the median in the literature review (Table 1 in the main text). 



85 

 

  

Figure WA10 

Study 2c: Performance Criteria for the Main Effect of X (𝛽1) 

 

Panel A: Parameter bias of 𝛽1 Panel B: Standard error bias of 𝛽1 Panel C: RMSE of 𝛽1 Panel D: Power of 𝛽1 

    

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and power (as defined in Table 2 in the main text) of the main effect of X (𝛽1) 

across sample sizes (log scale). Horizontal dashed lines indicate parameter bias, standard error bias and RMSE of zero and power of 80%. Vertical dashed lines indicate a sample 

size of 200, about the median in the literature review (Table 1 in the main text). 
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Figure WA11 

Study 2c: Performance Criteria for the Main Effect of Z (𝛽2) 

 

Panel A: Parameter bias of 𝛽2 Panel B: Standard error bias of 𝛽2 Panel C: RMSE of 𝛽2 Panel D: Power of 𝛽2 

    

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and power (as defined in Table 2 in the main text) of the main effect of Z (𝛽2) 

across sample sizes (log scale). Horizontal dashed lines indicate parameter bias, standard error bias and RMSE of zero and power of 80%. Vertical dashed lines indicate a sample 

size of 200, about the median in the literature review (Table 1 in the main text). 
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Web Appendix J: Study 3 

Figure WA12 has detailed results. OSF has the performance criteria for the main effects.

Figure WA12 

Study 3: Performance Criteria for the Moderation Effect (𝛽3) 

 

Panel A: Parameter bias of 𝛽3 Panel B: Standard error bias of 𝛽3 Panel C: RMSE of 𝛽3 Panel D: Power of 𝛽3 

    

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and power (as defined in Table 2 in the main text) of the moderation effect (𝛽3) 

across sample sizes (log scale). Horizontal dashed lines indicate parameter bias, standard error bias and RMSE of zero and power of 80%. Vertical dashed lines indicate a sample 

size of 200, about the median in the literature review (Table 1 in the main text). 
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Web Appendix K: Study 4a 

Figure WA13 has detailed results. OSF has the performance criteria for the main effects.  

  

Figure WA13 

Study 4a: Performance Criteria for the Moderation Effect (𝛽3) 

 

Panel A: Parameter bias of 𝛽3 

Skewness 3, excess kurtosis 10 (X and Z) Skewness 1, excess kurtosis 2 (X and Z) 

  

Panel B: Standard error bias of 𝛽3 

Skewness 3, excess kurtosis 10 (X and Z) Skewness 1, excess kurtosis 2 (X and Z) 
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Figure WA13 (CONTINUED) 

 

Panel C: RMSE of 𝛽3 

Skewness 3, excess kurtosis 10 (X and Z) Skewness 1, excess kurtosis 2 (X and Z) 

  

Panel D: Power of 𝛽3 

Skewness 3, excess kurtosis 10 (X and Z) Skewness 1, excess kurtosis 2 (X and Z) 

  

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared 

error (RMSE) and power (as defined in Table 2 in the main text) of the moderation effect 

(𝛽3) across sample sizes (log scale) and levels of non-normality of X and Z. Horizontal 

dashed lines indicate parameter bias, standard error bias and RMSE of zero and power of 

80%. Vertical dashed lines indicate a sample size of 200, about the median in the 

literature review (Table 1 in the main text). 
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Web Appendix L: Study 4b 

Figures WA14-15 have detailed results. OSF has the performance criteria for the main effect 

of Z. 

  

Figure WA14 

Study 4b: Performance Criteria for the Moderation Effect (𝛽3) 

 

Panel A: Parameter bias of 𝛽3 

Correlated measurement errors 

of x with y 

Correlated measurement errors 

of x with z 

Correlated measurement errors 

of x with x 

   

Panel B: Standard error bias of 𝛽3 

Correlated measurement errors 

of x with y 

Correlated measurement errors 

of x with z 

Correlated measurement errors 

of x with x 
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Figure WA14 (CONTINUED) 

 

Panel C: RMSE of 𝛽3 

Correlated measurement errors 

of x with y 

Correlated measurement errors 

of x with z 

Correlated measurement errors 

of x with x 

   

Panel D: Power of 𝛽3 

Correlated measurement errors 

of x with y 

Correlated measurement errors 

of x with z 

Correlated measurement errors 

of x with x 

   

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and power (as defined in Table 2 in 

the main text) of the moderation effect (𝛽3) across sample sizes (log scale) and types of correlated measurement errors. Horizontal 

dashed lines indicate parameter bias, standard error bias and RMSE of zero and power of 80%. Vertical dashed lines indicate a sample 

size of 200, about the median in the literature review (Table 1 in the main text). 
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Figure WA15 

Study 4b: Performance Criteria for the Main Effect of X (𝛽1) 

 

Panel A: Parameter bias of 𝛽1 

Correlated measurement errors 

of x with y 

Correlated measurement errors 

of x with z 

Correlated measurement errors 

of x with x 

   

Panel B: Standard error bias of 𝛽1 

Correlated measurement errors 

of x with y 

Correlated measurement errors 

of x with z 

Correlated measurement errors 

of x with x 
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Figure WA15 (CONTINUED) 

 

Panel C: RMSE of 𝛽3 

Correlated measurement errors 

of x with y 

Correlated measurement errors 

of x with z 

Correlated measurement errors 

of x with x 

   

Panel D: Power of 𝛽1 

Correlated measurement errors 

between x and y 

Correlated measurement errors 

between x and z 

Correlated measurement errors 

between x and x 

   

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and power (as defined in Table 2 in 

the main text) of the main effect of X (𝛽1) across sample sizes (log scale) and measurement error correlations. Horizontal dashed lines 

indicate parameter bias, standard error bias and RMSE of zero and power of 80%. Vertical dashed lines indicate a sample size of 200, 

about the median in the literature review (Table 1 in the main text). 
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Web Appendix M: Study 4c 

Figure WA16 has detailed results. OSF has the performance criteria for the main effects.

Figure WA16 

Study 4c: Performance Criteria for the Moderation Effect (𝛽3) 

 

Panel A: Parameter bias of 𝛽3 Panel B: Standard error bias of 𝛽3 Panel C: RMSE of 𝛽3 Panel D: Type I error of 𝛽3 

    

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and type I error (as defined in Table 2 in the main text) of the moderation effect 

(𝛽3) across the correlation of X with Z. Horizontal dashed lines indicate parameter bias, standard error bias, RMSE and type I error of zero. Vertical dashed lines indicate a 

correlation of X with Z of .20, about the mean from the literature review (Table 1 in the main text). 
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Web Appendix N: Follow-up Study 1 

The objective is to investigate differences in estimation time between the latent product 

method implemented in Mplus (Muthén and Muthén 2019), and the R implementation in 

package nlsem (Umbach et al. 2017). 

Method 

The design has two groups (Latent product method implementation: Mplus or R-nlsem). We 

generate 5,000 datasets with a sample size of 200, reliabilities of Y, X and Z of .85, a 

correlation between X and Y of .20 and .20 regression weights for main and moderation 

effects. Estimation settings and criteria for model convergence are held equal such as the use 

of 16 mixture components and a required change in log-likelihood smaller than .001 for 

convergence, with a maximum of 500 iterations. We use a personal computer with an Intel 

Core i7-4790 CPU running at 3.6 GHz and 32GB RAM for estimation. For each replication, 

we save the estimation time in seconds. 

Results 

Table WA4 has the results. Panel A shows large differences in estimation time for the latent 

product method implementations in Mplus and R-nlsem. Estimation for the latent product 

method in Mplus took an average of two to three seconds (M = 2.67, Mdn = 1.70, SD = 8.27) 

while R-nlsem estimation took close to a minute (M = 56.51, Mdn = 55.03, SD = 14.30). 

Thus, Mplus estimates the parameters much quicker than R-nlsem does.  

 To investigate whether the much shorter estimation timing also harms parameter 

recovery, we also look at the focal performance criteria. Note that we keep the number of 

mixture components (i.e., estimation precision) constant between the implementations such 

that it could not account for any differences. Although we find limited parameter bias for 

both Mplus and R-nlsem implementations (< 1.5% for all 𝛽s), the R-nlsem implementation 
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has standard error bias, about 10% for 𝛽1 and 𝛽3. The Mplus implementation has much less 

bias, a maximum about 2%. This also results in lower RMSE for R-nlsem and a higher power 

compared to Mplus.  

In sum, the R-nlsem implementation is not only slower than Mplus, it also performs 

substantively worse in terms of standard error bias. Thus, the Mplus implementation is 

preferred over nlsem. Other advantages are the use of the latent product method with single-

indicators (Hsiao et al. 2021), categorical moderation variables (Muthén and Muthén 2019) 

and the availability of Bayesian estimation for the latent product method (Asparouhov and 

Muthén 2021). A feature of nlsem is the availability of the quasi-maximum likelihood (QML) 

estimation of the latent product method (Klein and Muthén 2007), which has a less 

computationally intensive estimation algorithm but is less precise than the expectation 

maximization estimation focused on here (Kelava et al. 2011, p. 476). 
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Table WA4 

The Latent Product Method Implemented in Mplus Outperforms R-nlsem 

 

Panel A: Estimation timing (in seconds) 

Implementation M Mdn SD 

Mplus 2.667 1.704 8.271 

R-nlsem 56.508 55.031 14.303 

    

Panel B: Performance criteria 

Effect and Implementation Par. Bias SE Bias RMSE Power 

Main effect of X on Y (𝛽1)     

Mplus 1.226 1.259 .122 66.544 

R-nlsem 1.322 10.217 .116 73.132 

Main effect of X on Y (𝛽2)     

Mplus .343 1.176 .122 66.359 

R-nlsem .332 2.741 .121 67.549 

Moderation effect of XZ on Y (𝛽3)     

Mplus .05 2.027 .128 62.787 

R-nlsem .014 10.212 .122 69.602 

     

 

Notes: M is the mean, Mdn is the median and SD is the standard deviation of 

estimation timing in seconds. Par. Bias refers to parameter bias, SE Bias to 

standard error bias, RMSE is the root mean squared error of 𝛽 and Power refers to 

the statistical power of 𝛽, as defined in Table 2 in the main text. 
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Web Appendix O: Follow-up Study 2 

The latent product method uses a mixture distribution to approximate the non-normal 

indicator distribution due to the interaction. The number of normal distributions, or mixture 

components, trade off precision with computational intensiveness. We use 16 mixture 

components for the latent product method, following recommendations by Klein and 

Moosbrugger (2000, p. 465), for all our studies. Yet, the question remains whether the results 

are sensitive to the number of mixture components.  

Method 

The design has 5 groups (Number of mixture components: 2, 9, 16, 23 or 30). We generate 

5,000 datasets with a sample size of 200, reliabilities of Y, X and Z of .85, a correlation 

between X and Y of .20 and .20 regression weights for main and moderation effects. We then 

use between 2 and 30 (in steps of 7) mixture components for estimation with the latent 

product method (the default in Mplus is 15 mixture components (Muthén and Muthén 2019) 

and nlsem uses 16 mixture components by default (Umbach et al. 2017)). 

Results 

Table WA5 has the results. Using two mixture components, the latent product has a moderate 

parameter bias (e.g., about 11% for 𝛽3) and standard error bias (e.g., 9% for SE[𝛽3]). This 

bias decreases when increasing the number of mixture components. Overall, and across the 

performance criteria, differences between the estimates from estimation with nine or more 

mixture components are very small. Importantly, the values of the performance criteria are 

virtually identical for the results with 16 (the number of mixture components used in our 

studies) and more components, which is encouraging. In sum, the results of the simulations, 

that use 16 mixture components, are unlikely to change if additional mixture components are 

used.  
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Table WA5 

The Results are Robust to the Number of Mixture Components 

 

 Performance criteria 

Number of mixture components Par. Bias SE Bias RMSE Power 

2 mixture components     

Main effect of X on Y (𝛽1) 3.85 5.48 .09 67.1 

Main effect of Z on Y (𝛽2) 6.65 6.96 .09 67.8 

Moderation effect of XZ on Y (𝛽3) 11.1 8.98 .1 66.7 

     

9 mixture components     

Main effect of X on Y (𝛽1) .5 .72 .08 66.3 

Main effect of Z on Y (𝛽2) .55 1.55 .08 66.4 

Moderation effect of XZ on Y (𝛽3) 3.3 1.97 .09 63.1 

     

16 mixture components     

Main effect of X on Y (𝛽1) .45 .72 .08 66.3 

Main effect of Z on Y (𝛽2) .55 1.55 .08 66.4 

Moderation effect of XZ on Y (𝛽3) 3.3 1.97 .09 63.1 

     

23 mixture components     

Main effect of X on Y (𝛽1) .45 .72 .08 66.3 

Main effect of Z on Y (𝛽2) .55 1.55 .08 66.4 

Moderation effect of XZ on Y (𝛽3) 3.25 1.97 .09 63.1 

     

30 mixture components     

Main effect of X on Y (𝛽1) .45 .72 .08 66.3 

Main effect of Z on Y (𝛽2) .55 1.55 .08 66.4 

Moderation effect of XZ on Y (𝛽3) 3.25 1.97 .09 63.1 

     

 

Note: Par. Bias refers to parameter bias, SE Bias to standard error bias, RMSE 

is the root mean squared error of 𝛽 and Power refers to the statistical power of 

𝛽, as defined in Table 2 in the main text. 
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Web Appendix P: Follow-up Study 3 

This study explores the sensitivity of the results across factor score estimation methods. 

Method 

The design is: 4 (Factor scores method: Bartlett-Bartlett 2-CFA, Regression-Regression 2-

CFA, Bartlett-Regression 2-CFA, Bartlett-Regression 2-EFA) × 7 (Sample size). It focuses 

on four factor scores estimation methods. The first method (Bartlett-Bartlett 2-CFA) 

estimates Bartlett scores for Y and X and Z. Similarly, the second method (Regression-

Regression 2-CFA) estimates regression factor scores for Y, X and Z. The third method 

(Bartlett-Regression 2-CFA) uses the recommended Bartlett scores for Y and regression 

scores for X and Z (Devlieger et al. 2016; Skrondal and Laake 2001). These methods use a 1-

CFA for Y and a 2-CFA (without cross-loadings) for X and Z that accounts for the 

correlation between X and Z. Finally, we explore Bartlett scores for Y and regression scores 

for X and Z but taken from an unrotated exploratory factor analysis estimated with maximum 

likelihood (like the CFA’s) that fixes the number of factors to two while including cross-

loadings but not accounting for the correlation between X and Z (Bartlett-Regression 2-EFA). 

For consistency, all methods use a path analysis of factor scores, specified as Equation (1) in 

the main text, to estimate the moderation and main effects. The sample sizes are 100, 150, 

200, 300, 500, 750, 1,500 (as in Study 1). The reliability of Y, X and Z is fixed to .85 and the 

correlation between X and Z is .20, about the means in the literature review (Table 1 in the 

main text). 

Results 

Figure WA17 summarizes the results. Panel A has the parameter bias for the moderation and 

main effects. It shows that all factor scores methods under investigation are biased except for 

the recommended Bartlett-Regression 2-CFA method (Devlieger et al. 2016; Skrondal and 

Laake 2001). The bias of the moderation effect is about 27% for Bartlett-Bartlett 2-CFA, 
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15% for Regression-Regression 2-CFA, < 1% for Bartlett-Regression 2-CFA and 86% for 

Bartlett-Regression 2-EFA at a sample size of 1,500. The larger bias of the Bartlett-Bartlett 2-

CFA is that it accounts for measurement error in Y only and not in XZ, while Regression-

Regression accounts for unreliability in XZ only. In this study, the reliability of XZ is smaller 

than that of Y (cf. Equation (6) in the main text) hence the bias is larger. Inspection of the 

results reveals that the bias of the Bartlett-Regression 2-EFA method is upward for the main 

effect of X and downward for the main effect of Z and the moderation effect. This is likely 

due to the EFA accounting for cross-loadings instead of the correlation between the factors, 

such that the first factor (for X) accounts for part of the variance of Z and thus overestimating 

the effect of X and underestimating the remaining effects of Z and XZ on Y.  

 Panel B plots standard error bias. It shows that the standard error bias of Bartlett-

Regression 2-EFA is about 19% at a sample size of 1,500, while the other methods have 

limited standard error bias ≤ 1%. Panels C and D finds small differences between methods in 

terms of RMSE and power. For example, RMSE of the moderation effect .04 for the unbiased 

Bartlett-Regression 2-CFA, .06 for Bartlett-Bartlett 2-CFA, .05 for Regression-Regression 2-

CFA at a sample size of 1,500 and the biased Bartlett-Regression 2-EFA has an RMSE of 

.18. Estimated power of the moderation effect is about 64% at a sample size of 200 for all 

methods except 19% for the Bartlett-Regression 2-EFA. 

In sum, across the investigated factor score implementations, only using the 

recommended Bartlett scores for Y, and regression scores for X and Z taken from a 2-CFA 

can recover the main and moderation effects (Devlieger et al. 2016; Skrondal and Laake 

2001). 
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Figure WA17 

Follow-up Study 2: Performance Criteria for the Moderation and Main Effects 

 

Panel A: Parameter bias 

Moderation effect (𝛽3) Main effect of X (𝛽1) Main effect of Z (𝛽2) 

   

Panel B: Standard error bias 

Moderation effect (𝛽3) Main effect of X (𝛽1) Main effect of Z (𝛽2) 
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Figure WA17 (CONTINUED) 

 

Panel C: RMSE 

Moderation effect (𝛽3) Main effect of X (𝛽1) Main effect of Z (𝛽2) 

   

Panel D: Power 

Moderation effect (𝛽3) Main effect of X (𝛽1) Main effect of Z (𝛽2) 

   

 

Legend: 

 
Notes: Plots visualize method parameter bias, standard error bias, root mean squared error (RMSE) and power (as defined in Table 2 of 

the main text) of the moderation (𝛽3) and main effects (𝛽1 and 𝛽2) across sample sizes (log scale). Horizontal dashed lines indicate 

parameter bias, standard error bias and RMSE of zero and power of 80%. Vertical dashed lines indicate a sample size of 200, about the 

median in the literature review (Table 1 in the main text). 
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