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Abstract—Field experimentation has become a well-established
practice to estimate individual treatment effects. In recent years,
the Active Learning (AL) literature has developed methods to
optimize the design of field experiments and reduce their cost.
In this paper, we propose a novel AL algorithm for individual
treatment effect estimation that works in batch mode for cases
where the outcomes of an intervention are not immediate.
It uniquely combines Expected Model Change Maximization
and Bayesian Additive Regression Trees. Our approach (B-
EMCMITE) uses the predictive uncertainty around the individual
treatment effects to actively sample new units for experimentation
and decide which treatment they will receive. We perform
extensive simulations and test our approach on semi-synthetic,
real-life data. B-EMCMITE outperforms alternative approaches
and substantially reduces the number of observations needed to
estimate individual treatment effects compared to A/B tests.

IncrLearn Workshop @ ICDM2020
Index Terms—Machine learning;Experimental design

I. INTRODUCTION

Field experiments have become an essential tool to learn
how to allocate treatments optimally to a given population
(e.g., customers [1], patients [2] ) as they enable the estimation
of Individual Treatment Effects (ITE) [3]. For example, online
businesses use A/B testing on a regular basis to optimize web-
sites, banner/display advertising, social media marketing or
email campaigns. Classic A/B tests start with an experimental
phase, during which a random subset of units are assigned
one of the treatments, and end with a roll-out phase [4],
during which the remaining units are assigned to the treatment
that maximizes their ITE, as estimated using the experimental
data. While A/B tests provide unbiased estimates of treatment
effects, their costs increase as the number of experimental units
gets larger [5]. Beyond the operational costs of A/B tests, such
experiments are also expensive because they allocate units
randomly to treatments, meaning that many units receive a
sub-optimal treatment for the purpose of learning. These costs
constitute a major drawback of randomized sampling for deci-
sion makers, which often dissuade them from experimenting.

Active Learning (AL), which first emerged in the field of
supervised learning, provides a solution to this problem. The
idea is to sequentially (e.g. unit-by-unit) select the most helpful
units, rather than randomly selecting among all available units
[6], [7]. More recently, researchers have also used AL in
interventional settings to optimize treatment allocation as data
collection progresses [8]–[10]. While sequential unit selection

is suitable when the intervention has an immediate effect
(e.g. click-through rate), it does not fit contexts where the
intervention effect takes time to manifest (e.g. churn). Such
delays preclude decision makers from treating units one-by-
one, and forces them to experiment in batches. Typical tasks
suited for batch mode experimentation include direct-mail or
phone campaigns [11], proactive customer retention interven-
tions [12], and precision medicine [13]. In these contexts,
interventions are usually planned in waves and it might take
up to several months (or even years) before their impact can be
measured. So far, batch mode AL has mainly focused on non-
interventional settings (e.g. supervised learning [14], [15]).
Therefore, we propose to address this gap and develop a batch
mode AL method to estimate ITE in interventional settings.

Batch mode AL for ITE raises a number of specific chal-
lenges compared to sequential sampling. First, batch mode AL
needs to take into account the joint information conveyed in
a batch of units, rather than the incremental information con-
veyed by each unit separately. This is a daunting computational
task. Second, batch AL methods for ITE estimation need to
deal with the absence of counterfactuals that characterizes the
fundamental problem of causal inference. Therefore, counter-
factuals need to be estimated, which is a non-trivial task. Third,
the combination of AL with ITE estimation demands proper
uncertainty quantification for the ITE, which are necessary to
select units. Fourth, the experimental setting requires assigning
units to the treatment or control group, on top of deciding
which units to select. To address these four challenges, we
extend the Batched Expected Model Change Maximization (B-
EMCM) algorithm [16] to ITE estimation (B-EMCMITE). The
algorithm selects a batch of new experimental units (and their
treatments) that – in expectation – leads to the greatest change
to the ITE model that was estimated on the previous batch.
The model change is measured as the difference between the
current model parameters and the updated parameters after
training with the enlarged training set. In order to estimate ITE,
we use Bayesian Additive Regression Tree (BART) [17]–[19].
In contrast to other uplift approaches [20], [21], BART esti-
mates uncertainty in ITE [22]. In addition, because the ITEs
cannot be directly observed, we propose to approximate the
treatment effect when estimating the expected model change.
Finally, we design an assignment function that allocates units
to the condition with the highest uncertainty.

In a nutshell, B-EMCMITE splits the experimental phase in



two steps. In the first step, it randomly draws a small sample of
units on which we fit a BART model. It subsequently predicts
the ITE of the remaining units, as well as the uncertainty
around it. In the second step, it actively selects new units
based on these estimates in a new phase, called the sampling
phase. Note that the roll-out phase is the same as for classic
A/B tests. The process is visualized in Figure 1, and is further
described in Section III. In this paper we simulate the results
in a one-shot AL scenario, which means that the selection of
new units only happens once.

We apply our algorithm to different simulated data generat-
ing processes borrowed from the causal inference literature,
and to a semi-synthetic real-life data set from the Infant
Health and Development Program (IHDP). Overall, we find
that our method is able to reduce the sample size needed for
experimentation up to 30% for the simulated data and 45%
for the IHDP data, compared to classic A/B tests, without
sacrificing on the accuracy of estimates. Clearly, B-EMCMITE
offers potential to reduce the cost of experimentation.

The remainder of this article is organized as follows. In
Section 2, we review the relevant parts of the literature on
(batch mode) AL and uplift modeling. In Section 3, we
present our algorithm for batch mode AL for ITE estimation.
In Section 4, we evaluate the performance of the method
on both simulated and semi-synthetic data, and compare it
to alternative benchmarks. In Section 5, we outline future
research ideas and conclude the paper.

II. RELATED WORK

Our contribution combines two key areas of Machine Learn-
ing: Batch mode AL and uplift modeling, also referred to
as Machine Learning for causal inference (see e.g. [23]).
Recent advances in both areas of research have contributed
to an unprecedented boost of interest among both academics
and practitioners across numerous fields, marketing [24], eco-
nomics and econometrics [25], management [26], and com-
puter science [27]. Interestingly, few articles combine both
fields. Below, we provide an overview of recent developments
in both fields that directly relate to our work.

A. Active Learning

Originally, AL emerged in the field of supervised learning
as an attempt to identify cases that would most benefit from
(potentially costly) labelling (see, e.g., [7], [28]). Different
criteria have been used for selection, with one of the earliest
and most used being uncertainty sampling [29], [30]. Uncer-
tainty sampling sequentially selects the unit with the highest
uncertainty in the estimated outcome before retraining the
model. Other solutions involve comparing predictions made
by different models and choosing the units for which there
is the most disagreement (see e.g. query by committee [31]).
Finally, specifically for treatment effect estimation, Type-S
error sampling has recently been proposed [32] to select units
based on their Type-S error (i.e., the error in the sign of the
treatment effect, see Section III-B3 for more details).

In general, we can distinguish between different types of
AL approaches based on (i) whether they select units in
sequence (sequential AL) or in batches (batch mode AL), and
(ii) whether all units are available for experimentation at any
point in time (pool-based AL, see e.g. [33]) or their availability
is determined by external factors (online AL). In sequential
AL, the model is retrained after each new unit is collected.
In contrast, in batch settings, the model is re-trained after the
whole batch of units have been allocated to experimentation
and their outcome has been observed. Pool-based AL with
batch-mode selection is suitable when the interventions cannot
be spread out over time and/or the outcome of the treatments
is not readily available during the experimentation phase.
It is also recommended when retraining the model is time-
consuming [16]. Within batch-mode AL, a promising area of
development is B-EMCM. Model change considerations allow
the algorithm to select units that are both informative but
also representative of the total population and avoid collecting
redundant units in batch situations [33]–[35]. Our approach
builds on this method.

B. Uplift Modeling

Uplift models have become popular over the last decade
and are widely used in real-life settings because of their supe-
rior performance to traditional methods (see [20]for a recent
review). They allow for the estimation of ITEs, in contrast
to traditional approaches that focused on average treatment
effects. To use AL for uplift modeling, an estimate of the
uncertainty around the ITE is is often needed as many methods
utilize such uncertainty to identify the most informative units.
One of the few methods that provide uncertainty is BART
(see e.g., [36], [36]–[38] for BART for uplift modeling), which
have performed well in past competitions [39]. BART provides
credible intervals around the ITE estimates by considering the
variation in the MCMC draws. Note however that our method
can potentially be used with any uplift model that provides
uncertainty around the ITE estimates, such as Causal Forest
or Gaussian Processes.1

C. Active Learning Combined with Uplift Models

The aim of AL in ITE estimation is to find units who can
improve ITE estimation, and thus lead to better intervention
policies. It also provides a solution to lower the cost of ex-
perimentation by reducing the required sample sizes. Smaller
experiments are good from a financial viewpoint (see e.g.,
the large marketing budgets employed in A/B testing), but
also from a societal viewpoint. For instance, patients can be
allocated quicker to the most optimal treatment in a medical
context. Various approaches have been proposed to select units
more effectively in interventional settings [8], [10], [32]. They
are sequential, and do not focus on batch mode settings.

1We have empirically found (results available upon request) BART to
provide the best results in our framework

2



III. METHOD

In this section, we introduce the general research problem,
and present the building blocks of our proposed batch mode
active learning algorithm for ITE estimation. We first present
the methodology to select units for experimentation (i.e., the
acquisition function) and subsequently describe how units are
allocated between the treatment vs. control conditions (i.e., the
assignment function). The acquisition function builds on the
literature on Batched Expected Model Change Maximization
(B-EMCM) for continuous outcome [16], which we extend to
ITE estimation using BART. The assignment function takes
into account the variance of the counterfactuals’ outcomes as
predicted by the BART model.

A. Problem Formulation

Let y be the continuous outcome of interest, t ∈
{0, 1} the focal binary treatment and x ∈ Rd the vec-
tor of d features that we use to predict y. Let D =
{(x1, t1, y1), . . . , (xi, ti, yi), . . . , (xN , tN , yN )} denote the
data for all N units. Following the Neyman-Rubin potential
outcomes framework [40], the potential outcomes under con-
trol (T = 0) vs. treatment (T = 1) are denoted by Y (0) =
E[Y |X = x, T = 0] and Y (1) = E[Y |X = x, T = 1],
respectively, with Y = TY (1)+(1−T )Y (0). The probability
of receiving a treatment, i.e., the propensity score, is denoted
by e(xi) = Pr(T ). We assume that there exists an optimal
policy that assigns each unit i to the action that corresponds to
the most favorable potential outcome. Our aim is to find such
a policy by learning about the individual treatment effects,
τi(xi) = E[Y (1) − Y (0)|X = xi]. As explained earlier,
we focus on a setting where the experimental units have
to be selected in batch during the experimental phase, after
which the estimated ITEs guide an optimal allocation of the
remaining units across conditions during the roll-out phase.
Figure 1 provides a visual overview of our problem setup
compared to the classic A/B test.

The first step, the experimental phase, consists of (i) select-
ing units jointly for experimentation, (ii) deciding whether to
allocate them to the treatment or control condition, and (iii)
training a learning model y ∼ f(x, t), that is used to predict
the ITE.2 After the model is trained, the acquisition function
g(.) defines which units are selected, while the assignment
function h(.) determines which treatment a selected unit is
assigned to. The acquisition function returns the probability
that a unit is selected, while the assignment function returns
(modified) propensity scores.

The traditional A/B testing approach (top part of Figure 1)
consists of selecting units randomly, and randomly allocating
them to the treatment or control group. Thus, the acquisition
function is g(xi, τ̂i) = n2

n2+m , and the assignment function
equals 1

2 for all units. We propose to reduce the cost of this
approach by reducing the size of the experimental phase to a
subsample of n1 units (instead of n1+n2), and complement it

2In this work, we use BART from package BART https://cran.r-project.org/
web/packages/BART/index.html with default hyperparameters.
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Fig. 1. A/B Testing vs. Our Approach (B-EMCMITE). Our approach uses a
smaller randomized sample than a classic A/B test, combined with an active
sampling phase. The dotted lines represent actively selecting units for the
experimentation, and moving others to the roll-out phase.

by an active sampling phase for another n2 units. In particular,
we actively select and allocate n2 units using acquisition and
assignment functions respectively that have been optimized to
improve our estimation of the ITE. This active selection offers
a higher accuracy than a randomized experiment over n1 +n2
units. Put differently, it should be possible to find a smaller
sample of units than n2 that offers the same precision as a
classic A/B test over n2 units.

B-ECMCITE first selects n1 units randomly on which a first
model (M1) is trained. Based on this model, our acquisition
function g(X, τ̂), selects n2 new units based on their estimated
ITEs (as predicted from M1). Thus, the acquisition function
maps from the covariate and prediction spaces to {0, 1},
signalling which unit should be included in the active sampling
phase (see Section III-B). In addition, the assignment function
h(xi) allocates the n2 units to either the treatment or the
control group based on their predicted counterfactual variance
as provided by M1 (see Section III-C). Once the additional
units have been allocated and the outcomes observed, we re-
train a new model M2 based on the n1 + n2 units.

We call the final step the roll-out phase. During this step
all units m = N − n1 − n2 that have not been allocated yet
are assigned to the treatment that offers the most favorable
outcome. The latter is predicted from the learning model M2,
which is trained on all available data, n1 + n2. Note that this
phase is the same for the classic A/B test and for our proposed
approach. In both cases, the final model has been trained on
n1 + n2 units. However, the m remaining units are likely to
differ as the active selection does not select n2 randomly, but
in practice the roll-out sets between two selection mechanisms
also differ.
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B. Acquisition Function: Expected Model Change Maximiza-
tion for Individual Treatment Effect Estimation

Our acquisition function is based on the Expected Model
Change Maximization algorithm proposed by [16] for a (non-
)linear regression task and extended to the situation where the
goal is to predict τi rather than yi. The next subsections present
the original algorithm for sequential EMCM and batched
EMCM (B-EMCM), while Section III-B3 describes how we
extend B-EMCM to ITE estimation (B-EMCMITE).

1) Sequential Expected Model Change Maximization: Sup-
pose a differentiable, linear regression model yi ∼ fR(xi, θ),
trained on a random sample of n1 units. The loss function to
be minimized is given by

L =

n1∑
i=1

(yi − fR(xi, θ))
2. (1)

Sequential EMCM proposes to find the unit x∗i among the
remaining unlabelled N − n1 observations that will lead the
the largest change in θ,

xi
∗ = argmax

xi
′∈DU

||∆θ||, (2)

where DU denotes the set of N−n1 unlabelled units available
for selection and x′i represents one of the unlabelled units
available for selection. It is often not possible to compute the
model change directly, however, it can be approximated by the
gradient of the loss function,

||∆θ|| ≈ α∂Lx′

∂θ
, (3)

where α represents the learning rate. One cannot directly
calculate the model change since the true label y′i for the units
belonging to DU are unknown. Therefore, [16] proposes to
apply bootstrap to generate a prediction distribution of y′i and
to calculate the loss,

∂Lx′

∂θ
= E

[
2(y′i − fR(x′, θ))

∂fR
∂θ

∣∣∣X] (4)

⇓ Draw from prediction distribution
∂Lx′

∂θ
= 2(ŷ′i − fR(x′, θ))

∂fR
∂θ

(5)

In sequential settings, after a unit x′i is selected, the outcome
y′i is observed and θ is updated accordingly. Our method
uses the posterior predictive distribution instead to bootstrap
predictions and calculate the gradients.

2) Extension to Batch Mode: Following [16], the task is
to select a batch of x′ units at once that closely matches
the outputs of the sequential approach without retraining after
every unit. When extending EMCM to batch mode selection,
the outcomes are only observed after the batch of units has
been sampled, so the exact derivative cannot be calculated
after each unit and thus the regression can’t be updated. In
order to still take into consideration the joint information of the
units, Eq. (3) is updated with a gradient calculated on predicted

outcome, so that we can simulate the behavior of EMCM when
applied to a batch of units. This will, in expectation, result in
selecting those units that have higher uncertainty as they will
deviate more from the estimated mean. It is important to note
that the selection of units by the algorithm is done sequentially,
but the outcomes are only sampled after a batch is selected.
More detail on B-EMCM can be found in [16].

3) Extension to Individual Treatment Effect Estimation:
We extend B-EMCM to the case where the goal is to optimize
treatment allocation. Instead of predicting y, we propose to use
B-EMCM to predict τ . Therefore, we propose to use B-EMCM
in combination with uplift models, in particular BART. Our
B-EMCMITE addresses three main challenges when dealing
with batch-mode AL for ITE. First, a differentiable functional
form is needed to calculate the gradient descent steps which is
problematic given that BART is non-differentiable. We over-
come this issue by approximating the maximum a posterior
estimates of BART. Second, in contrast to y, the true value of
τ is never observed because of the absence of counterfactual.
Third, most uplift models lack uncertainty around the ITE,
while BART provides it due to its Bayesian nature. We utilize
the uncertainty by calculating the expected model change
based on draws from the posterior distribution.

The first step consists of fitting BART on DL, the set of n1
already labelled units, and make predictions about the unla-
belled units in DU . We use psBART [19], which has shown
good performance in both randomized and observational data
settings [41], in order to ensure the propensity scores are taken
into consideration when estimating the ITEs.3 The BART
model can be written as

yi ∼ fBART (xi, e(xi), ti). (6)

Using the BART model, we can then predict yi when i
is treated, ŷi(1) = f(xi, e(xi), ti = 1) or when i is in the
control group, ŷi(0) = f(xi, e(xi), ti = 0). The advantage
of BART compared to other uplift models comes from its
Bayesian nature. It provides us with multiple MCMC draws,
which allows us to quantify the uncertainty in predictions. The
difference between the two predictions at each MCMC draw
results in the estimated ITE, τ̂i = ŷi(1) − ŷi(0), while the
variance of the MCMC draws V (·) (after the burn-in samples
have been discarded) provides an estimates of the uncertainty
around τ̂i.

In contrast to the EMCM method presented in Section
III-B1, BART is non-differentiable. In their work, [16] solve
the problem of non-differentiability of Gradient Boosting De-
cisions Trees by using the concept of hyperfeatures based on
each individual tree, and approximating the model as a linear
regression with the hyperfeatures as covariates. However,
BART has an ever-changing tree structure, meaning that we
cannot rely on the concept of stable hyperfeatures. Instead, we
propose to fit a polynomial regression, parametrized by θ, on

3The propensity score is included to balance out the proposed assignment
function which can deviate the propensity scores from 0.5. [42] suggests that
propensity scores can even help when dealing with randomized studies. It also
makes our model suitable for observational data settings.
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the predicted mean of the predictive distribution of τ̂ , using
all the original features.

Finally, we also add a weight in the polynomial regression
to ensure that units with the highest Type S error will be
selected in priority (see [32]). The Type S error, an error in
sign, is defined as γ = E[I(sign(τ̂) 6= sign(τ))]. It takes value
between 0 and .5, with 0 the value of γ when the model is
certain about the decision and .5 when it is uncertain. In other
words, the weights enforce the regression to concentrate on
units where there is a higher chance of a wrong decision. To
do so, we use (1 + ζγ) as the weight, with ζ a scaling factor.
This way, the more uncertain units receive a larger penalty and
ζ is used to scale these differences.4 In sum, Eq. (1) becomes

L =

n1∑
i=1

(1 + ζγ) (τ̂i − fR(xi, θ))
2
, (7)

where fR(·) is the weighted polynomial regression described
above. Likewise, Eq. (5) becomes

∂Lx′

∂θ
= 2(1 + ζγ)(−τ̂ bi + fR(x′, θ))

∂fR
∂θ

(8)

In batch mode, the task is now to select n2 units at
once. For every unit in DU , we calculate the derivative of
Lx′ by plugging in a draw, τ̂ib from the predicted posterior
distribution of treatment effects. We then select first the unit
that provides the highest gradient and update the regression
weights with it.

The method is batch-mode, as until n2 is reached, we repeat
this process by calculating the loss of all remaining units and
updating the regression.5 While the selection of units is done
sequentially, it only uses information available prior to the start
of the selection and the outcomes are only collected after the
batch has been selected. In order to get a more reliable estimate
of the model change, we bootstrap the expected gradient,
by drawing from the posterior and calculating the change B
times.6 The whole process is summarized in Algorithm 1.

Note that our method might suffer from scalability issues
for larger datasets. Gradients need to be computed about n2 ∗
||DU ||∗B times. In real world, only periodical runs are needed,
so it is manageable to cycle through the unlabeled dataset n2∗
B times. To speed up this process, a solution is to subsample
the available unlabeled dataset and calculate a gradient every
selection round on a smaller batch of units.

C. Assignment Function

In classic A/B tests, the probability of receiving the treat-
ment during the experimentation phase is the same for all units.
Instead, we propose an assignment function that allocates
units based on their predicted counterfactuals’ variance. The
intuition is to select either control or treatment that has a higher

4In our empirical application, we use ζ = 5, which proved to be the best
value in simulations of ζ = {0, 5, 10}.

5If the number of units in DU is too big, a stochastic version can be used,
when only a random number of units’ gradients are evaluated at each iteration.

6In our simulations, we set B = 5 to limit computational needs. This was
enough to signal whether a unit was informative or not.

Algorithm 1: B-EMCMITE (Batch-mode Expected
Model Change for Individual Treatment Effect Esti-
mation) for one-shot Active Learning
input: DL,DU , n2

1 T ∼ fpBART (X)

2 ps← ̂e(x ∈ DL)
3 Train fBART,M1

on DL with ps included
4 Train regression on maximum a posteriori estimates

τ̂ ∼ fR(x, θ)
5 Predict for the unlabelled data both propensity scores

and potential outcomes:
6 Ŷ (1) ∼ fBART,M1(x ∈ DU , ˆe(x), T = 1)

7 Ŷ (0) ∼ fBART,M1
(x ∈ DU , ˆe(x), T = 0)

8 while i < n2 do
9 for x ∈ DU do

10 for b ∈ B bootstrap draws do
11 Y (1)b, Y (0)b ←Draw from Ŷ (1) and Ŷ (0)
12 τD = Y (1)b − Y (0)b

13 gb(x)← Calculate gradient with loss in eq.
(8)

14 end
15 x∗ = argmax 1

B

∑B
b=1 gb(x)

16 Update regression weights
θ ← θ − α 1

B

∑B
b=1 gb(x

∗)
17 Calculate propensity score e′(x∗) = h(x∗)
18 Select assignment with

zx∗ = Bernoulli(e(x∗))
19 Append x∗ to DL

20 Append zx∗ to z ∈ DL

21 Append e(x∗) to ps
22 DU ← DU /∈ x∗
23 end
24 end
25 Train fBART,M2

on potential outcomes in DL with ps
τ̂ ∼ fBART,M2(DU )

26 return τ̂

variance, as it can potentially lead to more information for the
model.7 When a unit is selected, we set

e(xi) =
V (ŷi(1))

V (ŷi(0)) + V (ŷi(1))
(9)

where V (·) is the variance defined in Sec. III-B3. This helps
the data collection concentrate on either treatment or control
with a higher uncertainty.

IV. EMPIRICAL EVALUATION

We evaluate the performance of our proposed algorithm
on both simulated data using a variety of Data Generating
Processes (DGPs), common in the causal inference literature,
as well as on a semi-synthetic real-life data set from the IHDP

7It also ensures that the propensity scores are also bounded away from 0
and 1, which fulfills the positivity assumption [25].
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[2], [32] which records the outcomes of early intervention
on reducing the developmental and health problems of low
birth weight, premature infants. The simulated and semi-
synthetic data (where the outcome variable is simulated) have
an advantage that both counterfactuals are known. This allows
us to measure the performance of our approach in predicting τ .
In addition, the DGPs vary in the complexity of the individual
treatment effect function, which allows us to investigate the
robustness of our approach across varying data contexts.

We benchmark our method against classic A/B tests where
the experimental units are selected randomly (see top panel
of Figure 1). In addition, we also compare it to two AL
algorithms prevalent in the AL literature, namely Variance-
based AL and Type S-based AL. Below, we present the and
define the performance metrics we rely on.

A. Benchmarks

We evaluate our method B-EMCMITE, as summarized in
Algorithm 1, against three benchmarks. Before presenting the
benchmarks, note that all methods are based on the same
overall population of N units and they use the same first n1
units (selected randomly from the overall population) in the
initial experimental phase. However, the methods differ in the
choice of the next n2 units.

1) RAND: Random sampling refers to classic A/B tests
where n2 units are randomly selected among the N−n1
available ones (see top panel of Figure 1).

2) VARIANCE: Variance-based AL uses the variance of
the dependent variable (in our case, the individual treat-
ment effect) to sample n2 units among the remaining
N − n1 units. The intuition behind variance-based AL
is that collecting more data about uncertain regions can
narrow the ITE posterior predictive interval [43]. The
method was proposed by [29] and successfully applied
later [30]. In the case of a sequential (non-batched) data
collection, variance-based sampling selects unit x∗ with
the highest uncertainty, as estimated by a BART model,

x∗ = argmax
x′

V (τ̂(x)). (10)

In batch mode, a possible extension is to select the top
n2 units with the highest uncertainty. but this would
not take into account the potential redundancy between
selected units. Moreover, variance-based AL requires
good variance estimates across the whole covariate
space, while BART can provide unreliable estimates of
the variances. This is especially true in regions that are
not observed in the training sample.

3) TYPE-S: Type S-based sampling selects the n2 units
with the highest predicted Type S error. If there are less
than n2 units with a non-zero Type S error, the rest of
the units are selected randomly.

For all benchmarks, we use h(xi) = 0.5, as assignment
function, meaning the allocation is random.

B. Performance Metrics

We evaluate our approach using two metrics. The first one
is typical to the uplift modeling and causal inference literature.
It focuses on the holdout precision of the estimated individual
treatment effects τ̂i for i = 1, ...,m. The second one evaluates
the ability of our approach to reduce the number of units
needed for experimentation, and is thus of key relevance.

1) PEHE: The first evaluation metric is the Precision in
Estimating Heterogeneous Effects (PEHE), defined as

PEHE =
1

m

m∑
i=1

(τi − τ̂i)2. (11)

This metric is common in uplift modeling [2], [21], [44],
[45], and focuses on how accurate the ITE estimates are
compared to the true ITE. The PEHE is measured on the
test set of size m. It is a holdout measure of precision.

2) EFFECTIVE SAMPLE SIZE: This metric calculates
how many units our method requires to reach the perfor-
mance (as evaluated by the holdout PEHE) of a classic
A/B test (i.e., RAND) over n2 units (in our empirical
applications, we set n2 = 100). This is a key metric to
assess the ability of our method to provide accurate ITE
estimates while reducing the cost of experimentation.
Results are reported in percentage,

ESS =
n1 + n2,B−EMCMITE

n1 + n2,RAND
(12)

where n2,selection is the respective selection’s n2 value.
A value of ESS < 1 indicates that our method achieves
a given PEHE faster than RAND. We report ESS as the
average of the different n1 values for each GDP.

C. Simulation Results

A detailed overview of the DGPs used for the simulations is
presented in Appendix ??. For each DGP, we set N = 1, 000
and n1 taking values 25, 50, 100, 200, and 500. We simulated
50 data sets of each kind. In Figure 2 (Panel A), we report
the average PEHE of the four approaches (B-EMCMITE, and
benchmarks) across all DGPs and values of n1 as a function
of n2. PEHEs are standardized for comparison purpose.

Overall, the accuracy of the estimated ITEs increases with
the size of the sampling phase n2 for all approaches. However,
the downward slope of our approach (B-EMCMITE, see dark
solid line) tends to be steeper than for the benchmarks. It
suggests that B-EMCMITE is better at finding the observations
that will lead to the highest precision gains. When analyzing
individual DGPs,8 our approach outperforms the others in most
cases, and performs on par in the remaining ones.

In addition, Table I (Panel A) reports the ESS calculated
based on the PEHE values of B-ECMCITE vs. RAND, as
explained above. On average, B-EMCMITE requires 6-30%
less data than RAND, except for two DGPs (Linear Sin and
Zaidi Lower-Athey) in which case the difference between

8The per DGP results are available in the replication package
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Fig. 2. Holdout standardized PEHE, with 95% confidence intervals (error bars) for the simulated data (Panel A) and the semi-synthetic data (Panel B) across
all n1 values tested. B-EMCMITE (solid black line) yields a significantly lower PEHE than all benchmarks for most values of n2.

the two methods is negligible. These results suggest that B-
ECMCITE can potentially greatly reduce the costs associated
with experimentation, compared to A/B testing.

As a final note, we also investigated the relative contribution
of the acquisition function (i.e. which units to select) and
assignment function (i.e. which treatment to allocate to a given
unit) to the performance of B-ECMCITE and found that both
functions contribute to the success of our algorithm.

Simulated Data ESS vs. RAND

DGP for Y(0): DGP for ITE:
Linear Linear 69.8
Linear Square 72.8
Sundin Linear 74.5
Sundin Square 74.7
Linear Square,p=10 83.9

Lu Lu 90.8
Zaidi Athey 94.6
Linear Sin 105.8

Zaidi Lower Athey 109.5

TABLE I
EFFECTIVE SAMPLE SIZE (IN %) FOR THE SIMULATED DATA, ORDERED

FROM SMALLEST TO LARGEST.

D. Semi-Synthetic Data

We also tested the performance of our method on the IHDP
data. The data contains 747 observations and 25 features. One
crucial difference with the simulations is that these data are ob-
servational. However, as our algorithm uses propensity scores
in both phase of ITE estimation (before and after sampling
phase), we can use it on the IHDP data. To simulate the
unobserved outcome variable, we used ten different response
surfaces, as proposed by [21].9 In addition, we randomly drew
50 training samples of size n1 = 10, 25, 50 and 100 for each

9https://github.com/AMLab-Amsterdam/CEVAE/tree/master/datasets/IHDP/csv

of the ten response surfaces to avoid that our results would
depend on one specific split of the data. Finally, we vary the
size of the sampling phase, with n2 = 10, 25, 50 and 100.

Figure 2 (Panel B) reports the standardized PEHEs for all
methods, averaged across all values of n1 and across response
surfaces. Results indicate that B-EMCMITE behaves well for
observational data as well, producing a lower PEHE across all
response surfaces.Importantly, we find that our approach also
does well at small sample sizes. The ESS values show that B-
EMCMITE requires 23-45% (mean 34.17%) less data across
all values of n1 tested with 10 different response surfaces.
This is a substantial reduction compared to A/B testing.

V. CONCLUSIONS AND FUTURE RESEARCH

We proposed a novel method to reduce the cost of ex-
perimentation in a batch mode AL framework. We provided
empirical evidence that our method reduces the size of field
experiments, making them more attractive in practice.

The limitations of this paper offers interesting directions for
future research. First, our goal was to offer an empirical com-
parison of B-EMCMITE with alternative approaches. Future
research should shed light on the boundary conditions for the
superiority of B-ECMCITE, and in particular on the bias when
AL is incorporated. Second, we relied on BART to estimate
ITEs. Future work could investigate the generalization to
alternative methods (e.g. Causal Forest, Gaussian Processes).
One particular downside of BART is its inability to estimate
uncertainty of the ITE in regions of the covariates’ space that
were not sampled. It would be beneficial to develop solutions
for this problem. Third, we used weights in the polynomial
regression to approximate the ITE. We proposed to penalize
more heavily the observations with higher Type S error in
order to reduce the risk of a wrong decision. Future work
could investigate alternative penalties.

The appendix and the code can be found online.10

10https://github.com/Nth-iteration-labs/emcite
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