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Managing Churn to Maximize Profits 

 

 
Abstract 

 

 

Customer defection threatens many industries, prompting companies to deploy 

targeted, proactive customer retention programs and offers. A conventional approach has been 

to target customers either based on their predicted churn probability, or their responsiveness to 

a retention offer. However, both approaches ignore that some customers contribute more to the 

profitability of retention campaigns than others. This study addresses this problem by defining 

a profit-based loss function to predict, for each customer, the financial impact of a retention 

intervention. This profit-based loss function aligns the objective of the estimation algorithm 

with the managerial goal of maximizing the campaign profit. It ensures (1) that customers are 

ranked based on the incremental impact of the intervention on churn and post-campaign cash 

flows, after accounting for the cost of the intervention and (2) that the model minimizes the 

cost of prediction errors by penalizing customers based on their expected profit lift. Finally, it 

provides a method to optimize the size of the retention campaign. Two field experiments affirm 

that our approach leads to significantly more profitable campaigns than competing models.  

 

Keywords: Defection, Field Experiments, Loss Function, Machine Learning, Proactive Churn 

Management, Profit Lift, Stochastic Gradient Boosting. 

 

 

 



 
 

Page 1 
 

1. Introduction 

Customer defection is a global phenomenon, as exemplified by the estimated 20% 

annual churn rates for credit cards in the United States and 20%–38% annual churn rates for 

mobile phone carriers in Europe (Bobbier 2013). As customer acquisition costs continue to 

rise, managing customer churn has become critically important for the profitability of 

companies. According to McKinsey & Co. reducing churn could increase earnings of a typical 

U.S. wireless carrier by nearly 10% (Braff, et al. 2003).  

Not surprisingly, top executives cite customer retention as a top marketing priority, 

which they pursue with higher retention budgets (Forbes 2011) and more sophisticated, 

proactive churn management programs. These retention programs attempt to target potential 

churners with incentives (Ganesh, et al. 2000), such as special offers, discounts, personalized 

(e)mail, or gifts, all of which aim to boost targeted customers’ behavioral loyalty (Winer 2001).  

For years, marketing practice and research have mainly focused on churn prediction 

and proposed ways to target customers according to their estimated churn risk (e.g., Ascarza 

and Hardie 2013, Lemmens and Croux 2006, Neslin, et al. 2006, Risselada, et al. 2010, 

Schweidel, et al. 2011, for a review see, Ascarza, et al. 2018). Despite the popularity of this 

approach, recent studies have found that ranking customers on the basis of churn probability 

may lead to ineffective retention campaigns. Instead, Ascarza (2018) and Guelman, et al. 

(2012) propose to rank customers on the basis of their sensitivity to the intervention, regardless 

of their risk of churning. Using uplift random forests, they identify customers for whom the 

intervention will prompt the greatest lift in retention probability. 

In both cases however, existing approaches fail to recognize the ultimate goal of 

companies to maximize the profit of their proactive retention campaigns. First, the rankings 

provided by both approaches are solely based on churn (risk or lift) and ignore the profit 

impacts of a retention intervention. The profit lift of a proactive retention incentive can be 
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estimated according to the intervention’s (1) impact on the churn probability of the targeted 

customer, (2) impact on post-campaign cash flows, and (3) cost. A positive profit lift indicates 

that the intervention is likely to increase their retention probabilities and/or post-campaign 

revenues sufficiently to compensate for the intervention cost. In contrast, negative profit lifts 

signal cases in which targeting would lead to a loss for the company. By focusing on churn lift 

rather than on profit lift, prior approaches might end up targeting customers for whom the effect 

on retention is positive but the profit lift is negative.  

Second, past approaches to obtain customer rankings ignore that prediction errors are 

more consequential in terms of campaign profit for some customers than others. Churn models 

attempt to minimize misclassifications of all customers’ churn, regardless of their profit 

potential. Likewise, uplift models aim at estimating each customer’s conditional average 

treatment effect as accurately as possible. In reality however, not all customers are equally 

valuable, and incorrectly predicting the churn risk or lift would be costlier for some customers 

than others. For example, failing to predict the response of a high profit-lift customer will have 

a larger financial impact on the campaign profit than failing to predict the response of a 

customer who is insensitive to the intervention.  

We propose a new approach that addresses these two limitations. Our approach defines 

a profit-based loss function that estimates, for every customer, the expected profit lift taking 

into account the customer-specific cost of a prediction error. In contrast to existing approaches, 

the profit-based loss function fully aligns with the managerial objective of the retention 

campaign. The profit-based loss function weights more heavily those customers who have the 

greatest (positive or negative) impact on the campaign profit. This weighted estimation offers 

more accurate predictions for high profit-lift customers, and thus boosts the profitability of the 

campaign. We empirically demonstrate the superiority of our approach for two retention 

campaigns: for a European interactive television subscription firm (Datta, et al. 2015), and for 
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a special interest membership organization in North America.  

The remainder of this article is organized as follows: In Section 2, we review existing 

approaches to customer retention and explain how they differ from a profit-based estimation 

approach. In Section 3, as a key building block for our approach, we define the profit lift of a 

retention program. In Section 4, we construct the profit-based loss function. Section 5 describes 

the various steps of our approach. Section 6 outlines the alternative methods we use as 

benchmarks. In Section 7, we present our empirical applications and results. Finally, we 

conclude in Section 8 with some limitations and potential extensions. 

2. Existing Approaches for Proactive Retention Management 

Most customer retention research focuses on predicting churn. In a modeling 

tournament organized by the Teradata Center at Duke University, 44 academics and 

practitioners proposed models (for overviews, see Blattberg, et al. 2008, Neslin, et al. 2006), 

including logistic regression (Knox and Van Oest 2014, Risselada, et al. 2010), probit models 

(Datta, et al. 2015), decision trees or CART (Huang, et al. 2012), neural nets (Huang, et al. 

2012), random forests (Larivière and Van den Poel 2005), bagging and boosting (Lemmens 

and Croux 2006), hazard models (Bolton 1998, Braun and Schweidel 2011, Donkers, et al. 

2007, Schweidel, et al. 2008a), hidden Markov models (Ascarza and Hardie 2013, Schweidel, 

et al. 2011, Schweidel and Knox 2013), simultaneous equation models (Reinartz, et al. 2005), 

probability models (Borle, et al. 2008, Fader and Hardie 2010, Fader, et al. 2010, Singh, et al. 

2009), and heuristics (Wübben and Von Wangenheim 2008).  

Most of these articles focus on predicting churn, instead of estimating the impact of 

marketing interventions on churn. This perspective contrasts with other areas of marketing that 

focus on the incremental “effect of a marketing action to inform targeting decisions” (Ascarza 

2018, p.82, see e.g., Khan, et al. 2009, Kumar, et al. 2008, Lewis 2005b, Neslin, et al. 2009, 

Rossi, et al. 1996, Venkatesan and Kumar 2004, Venkatesan, et al. 2007). Some notable 
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exceptions include estimating the impacts of promotional activities (Schweidel, et al. 2008b), 

retention dollars (Reinartz, et al. 2005), or targeting the social network of an individual 

(Godinho de Matos, et al. 2018) on churn and profit, but the effects are estimated at an 

aggregate or segment-specific level. Guelman, et al. (2012), Datta, et al. (2015) and Ascarza 

(2018) propose targeting customers according to their individual churn lift or change in churn 

due to marketing intervention, by estimating the heterogeneous treatment effect of the 

marketing action on churn. 

Despite their differences (focus on churn risk or churn lift), all these approaches seek 

to minimize prediction errors for all customers regardless of their contribution to the campaign 

profit. Churn models aim to minimize the percentage of churners classified as non-churners or 

vice versa; uplift models seek to reduce prediction errors in churn lift for all customers. The 

same limitation applies to studies that model customer churn and usage jointly to account for 

the dependence between these processes (Ascarza and Hardie 2013, Borle, et al. 2008, Datta, 

et al. 2015, Donkers, et al. 2007), which is conceptually and mathematically different from 

penalizing the prediction errors of a model based on profit lift.  

Empirical research thus tends to ignore the risk of using a loss function that is not 

aligned with managerial objectives. Yet the loss function is integral to the model specification. 

It implicitly defines the model under consideration (Engle 1993) and should reflect the focal 

business problem (Christoffersen and Jacobs 2004, Granger 1969). When different loss 

functions apply to in-sample estimations and out-of-sample evaluations, the mismatch leads to 

suboptimal model selection and predictions (Engle 1993, Granger 1993). We note some 

exceptions: Using profit-based loss functions, Blattberg and George (1992) model customers’ 

price sensitivity, Bult (1993) and Bult and Wittink (1996) estimate responses to mail, and 

Glady, et al. (2009) model temporal changes in usage. With conjoint analyses, Toubia and 

Hauser (2007) and Gilbride, et al. (2008) identify managerially relevant loss functions. 
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Bayesian statistics also highlight the importance of selecting managerially relevant priors 

(Montgomery and Rossi 1999). Data science and machine learning advances reiterate this 

importance (Chintagunta, et al. 2016), such that firms such as Amazon.com seek to include 

managerially relevant loss functions in their data acquisition strategies (Saar-Tsechansky and 

Provost 2007). Surprisingly, this focus has been missing in the retention literature. Our 

proposal to define a profit-based loss function to estimate the profit lift of a retention 

intervention addresses this gap. While conceptually straightforward, this approach requires 

significant changes in the model and estimation as indicated below. 

3. Defining the Profit of Proactive Retention Actions 

Imagine a proactive retention campaign that targets customers with a predefined retention 

incentive.1 The firm’s decision to target customer i is denoted 𝑇𝑖, so 𝑇𝑖 = 1 indicates targeting, 

and 𝑇𝑖 = 0 indicates no targeting. For every targeted customer i, the firm generates a profit lift 

 𝜋𝑖 that represents the net impact of the intervention for this customer. In the potential outcome 

framework for causal inference (Rubin 2005), it corresponds to the conditional average 

treatment effect (CATE) of the retention program.2 Following Neslin, et al. (2006), the profit 

of the campaign is the sum of the profit lift of all targeted customers,  

Π = ∑ 𝜋𝑖
𝑁
𝑖 𝑇𝑖,     (1) 

where N is the total number of customers. In practice, we do not observe CATE because we do 

not know what the behavior of a targeted customer would have been if she was not targeted, 

nor the behavior of a non-targeted customer if she was targeted. Instead, we only observe one 

of both outcomes. One solution to estimate CATE is to run a randomized control trial, in which 

the intervention is randomized across a representative sample of customers. By observing the 

 
1 We assume a constant, exogenously determined retention offer and optimize the customer target for a specific 

intervention. In the last section, we briefly discuss how to generalize our approach for multiple offers.  
2 Some companies call this construct Delta CLV, suggesting a comparison of the customer lifetime value (CLV) 

of a customer if targeted versus not targeted. We prefer the term profit lift, to acknowledge that we incorporate 

the cost of the intervention. 
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behavior of customers in both treatment and control groups, we can estimate the causal impact 

of the campaign at the customer level (Rosenbaum 2017).3 

The expected profit lift of a retention action given the intervention cost 𝛿 is 

𝐸(𝜋𝑖|𝛿) = 𝐸(𝐶𝐿𝑉𝑖 − 𝛿|𝑋𝑖, 𝑇𝑖 = 1) − 𝐸(𝐶𝐿𝑉𝑖|𝑋𝑖, 𝑇𝑖 = 0),  (2) 

where 𝐸(𝐶𝐿𝑉𝑖 − 𝛿|𝑋𝑖, 𝑇𝑖 = 1) is the net residual4 customer lifetime value (CLV) of customer 

i if targeted with an offer that costs 𝛿, and 𝐸(𝐶𝐿𝑉𝑖|𝑋𝑖, 𝑇𝑖 = 0) is the (net) residual CLV if 

customer i is not targeted (Provost and Fawcett 2013). If a customer is targeted, her net residual 

CLV is the discounted value of the cash flows after the campaign minus the per customer cost 

of the retention intervention (Fader and Hardie 2010). When a customer is not targeted, the 

cost of the intervention is not incurred.  

We consider the residual CLV for periods subsequent to the intervention (taking place 

at the beginning of period t = 1) in the general case where future retention probabilities and 

cash flows vary over time and given an infinite time horizon. Let 𝑟𝑖𝑡
(1)

 and 𝑟𝑖𝑡
(0)

 denote the 

retention probabilities of customer i in the period t following the intervention, depending on 

whether this customer is targeted (1) or not (0).5 Likewise, let 𝑚𝑖𝑡
(1)

 and 𝑚𝑖𝑡
(0)

 denote the cash 

flows generated by customer i in the period t following the intervention if targeted or not, 

conditional on customer i being alive. In addition, d is the discount rate for post-campaign cash 

flows. We distinguish between two types of retention incentives. Unconditional incentives, 

such as thank you presents, can be sent to customers without their prior consent and without 

any conditions. Alternatively, conditional incentives (e.g., discounts, gifts) can be provided to 

customers only if they agree to purchase or renew their subscription. In many contractual 

 
3 We take the viewpoint of the firm and define the treatment as the firm sending a retention incentive to a 

customer (as proposed by Ascarza 2018). Thus, the treatment (TE) and the intent-to-treat (ITT) effects coincide.  
4 By using the residual CLV, we ignore transactions and costs (including acquisition cost) that precede the 

campaign as they are irrelevant to the current campaign. 
5 The retention probability 𝑟𝑖𝑡  = ∏ 𝑟̃𝑖𝑘

𝑡
𝑘=1  with 𝑟̃𝑖𝑘 the retention probability going from period k-1 to period k. For 

instance, the retention probability two periods after intervention equals to the product of the retention 

probability in period 1 (right after intervention) and the retention probability in period 2. 
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settings, customers who are up for renewal receive a discount if they renew their contract. 

Depending on whether the retention incentive is conditional or not, we rewrite Equation (2) as  

𝐸(𝜋𝑖|𝛿) = (∑
𝑟𝑖𝑡

(1)
𝑚𝑖𝑡

(1)
−𝑟𝑖𝑡

(0)
𝑚𝑖𝑡

(0)

(1+𝑑)𝑡
∞
𝑡=1 ) −

𝑟𝑖1
(1)

𝛿

(1+𝑑)
    (3) 

for unconditional incentives, and  

𝐸(𝜋𝑖|𝛿) = (∑
𝑟𝑖𝑡

(1)
𝑚𝑖𝑡

(1)
−𝑟𝑖𝑡

(0)
𝑚𝑖𝑡

(0)

(1+𝑑)𝑡
∞
𝑡=1 ) −

𝛿

(1+𝑑)
    (4) 

for conditional ones.6 The difference between Equations (3) and (4) reflects that only customers 

who accept the offer prompt the cost of the conditional incentive. Also note that the overhead 

(fixed) costs of the retention campaign are not taken into account in the profit lift since they do 

not affect the customer ranking. Finally, note that the churn lift definition provided by Ascarza 

(2018), given by 𝑟𝑖1
(1)

− 𝑟𝑖1
(0)

is a special case of Equations (3) and (4) when the intervention cost 

and cash flows are ignored. 

Theoretically, the net residual CLV should be estimated over an infinite time horizon, 

but, for practical purposes, most companies and academics focus on a specific time period and 

use a truncated CLV (Glady, et al. 2015). In our empirical application, we estimate the impact 

of the intervention on the next period, as detailed in Section 7 (and further drop the time 

subscript in what follows). Indeed, estimating the causal effect of a retention intervention over 

an infinite, or even long, period of time is impractical because the company would need to 

ensure that no confounder influences the outcome of interest during this period. In practice, it 

is unlikely that the unconfoundedness assumption required for causal inference would not be 

violated (Rosenbaum and Rubin 1984).7 

 
6 We assume that the cost of the incentive is incurred in the same period as the first post-intervention cash flow 

is received, and thus discount its cost by one period. 
7 Our discussions with several customer retention managers affirmed that the main barrier to using A/B testing is 

that they do not want to isolate groups of customers for a long time. Practical constraints make it impossible to 

exclude the risk of contamination by post-treatment marketing interventions or external factors that have 

nothing to do with the retention campaign but that endanger the comparability of the treatment and control 

groups. A multi-period horizon thus would be practically intractable, as is also the case for the data sets in our 

empirical application. 
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The expected profit lift can take any positive to negative value. It will be positive if the 

residual CLV, conditional on targeting, is larger than the combination of residual CLV in the 

absence of targeting and the cost of the retention intervention. For example, customers might 

intend to churn but change their mind after receiving the retention incentive or those who did 

not intend to churn might increase their spending in response to the incentive, because of 

“delight” (Blattberg, et al. 2008). The expected profit lift instead is negative if the combination 

of the residual CLV in the absence of targeting and the cost of the intervention is greater than 

the residual CLV, conditional on targeting. Such counterproductive outcomes may occur if 

retention offers wake the “sleeping dogs” by reminding them of their dissatisfaction with the 

firm’s service, thereby increasing their probability to churn (Ascarza, et al. 2016).  

4. Developing a Profit-Based Loss Function  

In this section, we describe the classic loss function used in the domain of retention 

management. Based on the definition of profit lift proposed in the previous section, we then 

propose a new profit-based loss function. The profit-based loss function can be used with any 

estimation technique, including logistic regression (via likelihoods) and more advanced 

machine learning methods. For this study, we chose to rely on stochastic gradient boosting 

(SGB), a greedy algorithm based on gradient descent (Friedman 2001, 2002) because it 

supports flexible specifications of the loss function and provides powerful optimization.  

4.1. Classic Loss Function  

Let (𝑦1, 𝑥1), … , (𝑦𝑖, 𝑥𝑖), … , (𝑦𝑁 , 𝑥𝑁) be a (calibration) sample of known values of 𝑦, the 

binary churn outcome, and 𝑥 be a set of covariates for N customers. Let F be the function that 

maps x to y. The SGB estimation method we describe in the next section (or another binary 

prediction model, such as logistic regression) provides fitted values of 𝐹(𝑥𝑖) for every customer 

i based on the values of the 𝑥 variables. When the fitted values are between 0 and 1, as with a 

logistic regression, they are called (churn) probabilities. When they are not restricted to this 
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interval, as in the SGB method, they are called scores. Scores can be mapped to probabilities 

using various transformations8 (Greene 2003). For proactive retention programs, these 

estimated probabilities (or scores) represent the main input to rank-order customers, so 

companies can target the customers with the highest scores.  

In a logistic regression, the estimation of probabilities relies on maximum likelihood, 

which aims to maximize the sum over the individual (weighted) log-likelihoods: 

𝑙𝑜𝑔𝐿𝑖 = 𝑤𝑖 (𝑦̃𝑖log 𝑝(𝑥𝑖) + (1 − 𝑦̃𝑖)log (1 − 𝑝(𝑥𝑖))),   (5) 

where 𝑦̃𝑖 = 1 when customer i is a churner or 0 when she is a non-churner (Hastie, et al. 2009). 

Most churn models assume a constant weight (𝑤𝑖 = 1) for all customers, so the cost of 

misclassification is the same for all of them. Some models add a customer-specific weight 𝑤𝑖 ≠

1 (depending on the model used, weights must sum to one or not), which leads to a weighted 

estimator (Cosslett 1993, Manski and Lerman 1977). Weighted estimators can impose different 

costs on type I (false positives) and type II (false negatives) errors. This option is also available 

for imbalanced data (Lemmens and Croux 2006), such that different weights would be assigned 

to churners and non-churners to account for the skewness of the y distribution. 

Instead of maximizing a likelihood function, machine learning algorithms minimize a 

loss function. Most likelihoods have exact loss counterparts. Estimating a model with the log-

likelihood in Equation (5) is the same as minimizing the binomial loss function,  

Ψ𝑖 = 𝑤𝑖𝑙𝑜𝑔(1 + 𝑒−2𝑦𝑖𝐹(𝑥𝑖)),      (6) 

where 𝑦𝑖 = 1 for a churner and −1 for a non-churner, so 𝑦̃𝑖 = (𝑦𝑖 + 1)/2 (for the proof, see 

Web Appendix A; Hastie, et al. 2009). A loss function is defined by three components: its 

margin (here, 𝑦𝑖𝐹(𝑥𝑖)), its functional form, and, possibly, the weighing structure 𝑤𝑖. First, the 

margin defines the variable to predict (here, y) and qualifies the accuracy of a prediction of the 

 
8 The estimated scores 𝐹𝑖̂ between ]−∞, +∞[ can be transformed into defection probability estimates 𝑝𝑖̂ between 

[0,1] (e.g., when computing CLV) using the logistic (inverted-logit) formula, 𝑝̂𝑖 =
1

1+exp(−2𝐹̂(𝑥𝑖))
 . 
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outcome of interest. In our preceding example, the margin 𝑦𝑖𝐹(𝑥𝑖) captures the extent to which 

𝐹(𝑥𝑖) is a good predictor of 𝑦𝑖.
 The more negative the margin becomes (i.e., y and F of opposite 

signs), the larger the prediction error is. The goal is to estimate a positive score F for 𝑦𝑖 = 1 

and a negative score F for 𝑦𝑖 = −1. 

Second, the functional form defines the loss assigned to a given observation, according 

to the estimation/prediction error associated with this observation. It indicates the predictions 

that need improvement. In our example, the loss is a monotone decreasing function of the 

margin 𝑦𝑖𝐹(𝑥𝑖). The loss associated with a negative margin (i.e., higher error) is greater than 

that associated with a positive margin (smaller error). It only depends on y via the margin (i.e., 

in combination with F), so this loss cannot distinguish false positives (𝑦𝑖 = −1 and 𝐹(𝑥𝑖) >

0) and false negatives (𝑦𝑖 = 1  and 𝐹(𝑥𝑖) < 0) and instead penalizes both equally.  

Third, the weight 𝑤𝑖 determines an additional penalty assigned to a prediction error, 

specific to a given individual, similar to the weighted estimator we described previously. It can 

depend on y (penalize type I and type II errors differently) or other variables (e.g., cash flows 

generated by a customer). In most applications, each individual is weighted equally. 

Although statistically sound, the likelihood and the loss function in Equations (5) and 

(6) do not align with the objectives of retention programs to maximize profits. They depend 

solely on whether a customer is well-classified as a churner or not, rather than on her profit lift.  

4.2. Profit-Based Loss Function  

In contrast with a classic loss function, a profit-based loss function seeks to ensure that 

the firm targets customers with a positive profit lift and does not target customers with a 

negative profit lift. To achieve these goals, we adapt the loss function in several ways.  

First, we adapt the margin by replacing 𝑦𝑖 with 𝐸(𝜋𝑖), to represent 𝐸(𝜋𝑖|𝛿), as defined 

in Equation (2), which reflects the new outcome of interest. The new margin ensures that 

customers with a higher profit lift earn a higher score 𝐹(𝑥𝑖) than customers with a lower profit 
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lift. The customer ranking based on these scores depends on the profit that a decision to target 

each of them would generate. The profit-based loss function thus becomes 

Ψ𝑖 = 𝑤𝑖𝑙𝑜𝑔(1 + 𝑒−2𝐸(𝜋𝑖) 𝐹(𝑥𝑖)).    (7) 

Second, we weight the loss attached to each customer as a function of their expected 

profit lift to specify which prediction errors have the largest (positive or negative) impact on 

profit and thus should be penalized more. We empirically test three weighting schemes: (i) 

symmetric weighting, where 𝑤𝑖 = |𝐸(𝜋𝑖) | for all customers; (ii) right weighting, such that 

𝑤𝑖 = |𝐸(𝜋𝑖) | for 𝐸(𝜋𝑖)  ≥ 1 and 𝑤𝑖 = 1 otherwise; and (iii) left weighting, where 𝑤𝑖 =

|𝐸(𝜋𝑖)| for 𝐸(𝜋𝑖) ≤ 1 and 𝑤𝑖 = 1 otherwise. Symmetric weighting ensures that predictions of 

the profit lift will be the most accurate for customers with the most extreme (positive or 

negative) profit lift values. Both ignoring a customer who would have contributed greatly to 

campaign success (i.e., 𝐸(𝜋𝑖) is much greater than 0) and mistakenly targeting a customer who 

reacts very negatively to the campaign (i.e., 𝐸(𝜋𝑖) is much smaller than 0) would have 

detrimental impacts in Equation (1), so symmetric weighting penalizes both equally. In 

contrast, right weighting focuses exclusively on customers with the most positive expected 

profit lifts, while left weighting focuses on customers with the greatest losses only. These latter 

weighting schemes mimic the notion of penalizing type I versus type II errors in classification 

settings.9 We treat the choice of the weighting scheme as an empirical question. The next 

subsection provides useful insight into the relative performance of these weighting schemes 

depending on the data characteristics. 

4.3. Monte Carlo Simulations and Statistical Properties 

The profit-based loss function belongs to the category of weighted estimators with 

endogenous weights (Solon, et al. 2015). These estimators are known to have different 

statistical properties than unweighted estimators. In Web Appendix B, we report the results of 

 
9 We thank the review team for this suggestion. 
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two Monte Carlo simulations that study the statistical properties of the profit-based loss 

estimator. The simulations show why and when a weighted estimator outperforms an 

unweighted one. We find that an estimator that uses the profit-based loss function has the same 

statistical properties as the weighted estimator for endogenously stratified samples (Cosslett 

1993, Donkers, et al. 2003, King and Zeng 2001a, 2001b, Manski and Lerman 1977). On 

average, these estimators are less efficient than estimators that use an unweighted loss, because 

weighing observations dilutes the information by assigning low weights to some observations.  

However, the simulations reveal the mechanism by which a weighted estimator can 

offer more profitable campaigns than an unweighted one: The weighted estimator offers less 

bias and is more efficient than the unweighted estimator at the individual level for observations 

that receive a greater weight. In fact, only the predictions for the observations that receive a 

small weight exhibit a greater bias and lower efficiency. This cross-customer reallocation 

mechanism ensures that the weighted estimator fits the behavior of customers who have the 

greatest impact on the profit of the retention campaign better than the unweighted estimator 

does. We also find that this mechanism is stronger when the accuracy of statistical models is 

poorer (smaller signal-to-noise ratio), for smaller sample sizes and in presence of less extreme 

weights. Noting that retention models reputably have low predictive power (see the recent 

review by Ascarza, et al. 2018) and that field experiments are usually based on small treatment 

(and control) groups, we expect a substantial effect of weighting on the profitability of retention 

campaigns. Finally, the simulations show that the relative performance of the various weighting 

schemes (symmetric, right and left weighting) likely depends on the expected profit lift 

distribution. In general, it is more beneficial to put greater weight on the under-represented part 

of the distribution (e.g., use right weighting if the share of positive profit lifts is small).  

5. Integrated Profit-Based Approach 

We integrate the profit-based loss function into the overall design of retention programs 
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in three stages, as depicted in Figure 1: (1) Estimate the expected profit lift of a retention 

intervention, (2) optimize the targets of the retention campaign, and (3) evaluate the targeting 

decisions. Central to our approach, each stage uses a different sample of customers, which we 

refer to as the calibration sample, validation sample, and test sample, respectively. The 

calibration sample is used only for model estimation. We use the validation sample to 

determine the target size. The number of customers to target is chosen to maximize a holdout 

profit measure. As we further explain below, determining the target size based on a holdout 

profit measure allows us to account for the fact that our model might over- or under-estimate 

the profit lift of customers on the calibration sample. Finally, the test sample contains 

customers who have not been used for estimation or for determining target size, so that we 

obtain a true holdout evaluation of campaign performance. To generate these three samples, 

we randomly split the data into three equal sets. To ensure the results are generalizable and not 

driven by any specific random split, we generated 100 different splits (Ascarza 2018), for both 

empirical applications. With this bootstrapping procedure, we also can test whether holdout 

performance is statistically superior to that of benchmark approaches. 

Insert Figure 1 about here 

5.1. Estimation Stage 

  We first estimate the heterogeneous treatment effect of the intervention on churn 

probabilities and cash flows separately, allowing for the possibility that the campaign can affect 

both processes differently. This step reflects the most recent benchmark in the literature 

(Ascarza 2018, Guelman, et al. 2012, Hitsch and Misra 2018). Once we obtain an estimate of 

the components of the expected profit lift, we plug them into Equations (3) and (4) and we use 

SGB with the profit-based loss function defined in Equation (7). This step allows us to penalize 

customers according to their respective impact on campaign profitability.  
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5.1.1. Lift in Churn and Lift in Cash Flows. To estimate the heterogeneous treatment 

effect of an intervention, we use data from randomized experiments, in which some share of 

customers gets assigned to the treatment condition and targeted with a retention offer, while 

others are assigned to the control condition and do not receive a retention offer (in practice, 

this would mean running a pilot on a small sample of randomly chosen individuals). This 

approach is central to the potential outcome framework (Rubin 1974). Customers randomly 

allocated to two conditions should be, on average, similar in both observed and unobserved 

covariates across conditions, so we use these data to estimate the impact of the intervention. 

We observe churn in the period after intervention denoted by 𝑦𝑖
(1)

 if the customer is in the 

treatment group and 𝑦𝑖
(0)

 if the customer is in the control group. In addition, we observe 

customers’ cash flows in the period following the company intervention: 𝑚𝑖
(1)

 if the customer 

is in the treatment group and 𝑚𝑖
(0)

 if in the control group. Finally, we observe customer-specific 

covariates and the cost of the retention offer (see Section 7). With this information, we estimate 

the customer-specific effect of the intervention on retention probabilities and cash flows.  

Although estimating an average treatment effect of an intervention is straightforward 

(it only requires comparing the average outcome in the treatment and control groups), the 

estimation of the heterogeneous treatment effects is more complex as it requires comparing the 

outcomes for matched individuals. Machine learning for causal inference, and uplift models in 

particular, offers a solution to this problem by matching pairs of customers in the treatment and 

control groups on the basis of their available covariates, and then comparing their respective 

churn and cash flow outcomes (Athey and Imbens 2016). Various uplift models can be used, 

depending on the nature of the dependent variable. For the binary retention model, we follow 

Ascarza (2018) and estimate the lift in retention probabilities 𝑟̂𝑖
(0)

 and 𝑟̂𝑖
(1)

 in the period 

following intervention using uplift random forests (Guelman, et al. 2015). To estimate the lift 
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in cash flows 𝑚̂𝑖
(0)

 and 𝑚̂𝑖
(1)

 we use the uplift k-nearest neighbors (kNN) for continuous 

outcomes (Alemi, et al. 2009, Su, et al. 2012).10 

5.1.2. Profit Lift Estimation by SGB with a Profit-Based Loss Function. We combine 

all estimates obtained in the previous step to calculate the expected profit lift according to 

Equations (3) or (4). Then, we estimate the profit lift scores with SGB using the profit-based 

loss function defined in Equation (7). This weighted loss function allows us to penalize 

customers according to their respective impact on campaign profitability. Any (machine 

learning) estimation method could be used with the profit-based loss function, but we choose 

SGB because of its superior predictive performance for churn prediction (it won the Teradata 

Churn modeling tournament; Lemmens and Croux 2006, Neslin, et al. 2006) and other analyses 

(Hastie, et al. 2009). Moreover, it uses a flexible optimization algorithm based on gradient 

descent, so it can be used with any loss function. As a greedy numerical optimization algorithm 

(Friedman, et al. 2000, Friedman 2002), SGB sequentially combines predictions by simple 

models, typically regression trees (Breiman, et al. 1983), then makes initial guesses about each 

customer’s outcome. It tries to predict residual errors by fitting a tree. At each iteration, a new 

tree is estimated to fit the residuals of the previous iteration. The estimation runs until no 

improvement occurs. We provide a description of regression trees in Web Appendix C.  

Before the estimation, a loss function Ψ is chosen and used at each iteration b to 

compute the difference or error between the fitted scores 𝐹𝑏(𝑥𝑖), and the actual values to be 

predicted (in our case, the expected profit lifts). Once the loss function is defined, the estimation 

starts by setting each observation to an initial value, denoted by 𝐹̂0(𝑥𝑖), which can take any 

value in (−∞, ∞). From this initial guess, we compute the error (i.e., difference between the 

 
10 Uplift kNN computes the Euclidean distance between every pair of observations using all observed 

characteristics. Next, it selects k (here, k = 1) observation(s) in the calibration sample that is/are the closest to 

each observation in the validation (and test) sample and that received the treatment; 𝑚̂𝑖
(1)

 is the (average) cash 

flow for this/these k nearest neighbor(s). The same thing is done for the control sample. Both uplift random 

forests and k-nearest neighbors are implemented in the uplift R package (Guelman 2014). 
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fitted values 𝐹̂0(𝑥𝑖) and actual values). The next step fits a tree model 𝑇(𝑥𝑖, Θ0) of the errors 

against the predictors 𝑥 and computes the fitted values of these errors.11 The number of terminal 

nodes is relatively small (maximum 8 nodes) to avoid overfitting. These fitted errors are then 

combined with the predicted values 𝐹̂0(𝑥𝑖). The combination produces “boosted” fitted values 

(i.e., the original guess is boosted by the fitted errors), denoted 𝐹̂1(𝑥𝑖). This process repeats to 

compute the error from the boosted fitted values (difference between the fitted values 𝐹̂1(𝑥𝑖) 

and actual values), fit a tree model of the new errors, and combine the fitted values of these 

new errors to 𝐹̂1(𝑥𝑖). We repeat these steps B times until the model converges. Web Appendix 

D provides the estimation details. 

5.2. Optimization Stage: Target Size Determination 

The second stage determines how many and which customers to target to maximize the 

profit of the retention campaign. We use the validation sample for this purpose. The first step 

is to rank customers. Using the model estimated on the calibration sample, we predict the 

(holdout) profit lift scores for customers in the validation sample knowing their covariates 

values. We then rank them in order of decreasing scores, such that 𝐹̂(𝑥1) ≥ ⋯ ≥ 𝐹̂(𝑥𝑖) ≥ ⋯ ≥

𝐹̂(𝑥𝑁). The final step is to determine the campaign size S, that is, the number of customers to 

target, starting at the top of the ranking. Because customers can have a negative profit lift, the 

optimal campaign size is usually smaller than 100%. 

Two common approaches to determine target size include selecting the top decile 

(Lemmens and Croux 2006, Schweidel and Knox 2013), or applying a budget constraint (Datta, 

et al. 2015), which we present in Section 6.2. Instead, we optimize the campaign size using full 

enumeration search, combined with offline evaluation. In particular, we calculate the holdout 

profit of a campaign of size S going from 1 to N (total number of customers in the validation 

 
11 Fitting the errors gradually forces the model to predict the residual variance in the dependent variable that was 

unexplained in the prior iteration. Thus the estimation progressively concentrates on customers whose behaviour 

is difficult to predict. 
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sample) and identify the target size that maximizes the holdout campaign profit.  

Calculating the holdout profit of a campaign of any target size S for a given customer 

ranking (i.e., the predictions of a model) is not straightforward, because we do not observe the 

actual profit lift of customers (i.e., we cannot observe the same unit at the same time in both 

the treatment and control groups). Offline policy evaluation provides a solution to this problem 

(Li, et al. 2012). This evaluation strategy is common with randomized experiments (Ascarza 

2018, Hitsch and Misra 2018). It is “offline” in the sense that it is not necessary to effectively 

target the customers identified by a given policy. Instead, analysts can leverage the random 

treatment allocation to test the performance of any policy. For each target size S, we estimate 

the impact of the campaign in the period following the intervention, according to the per 

customer profit lift 𝜋𝑆 it generates. That is,  

𝜋𝑆 = 1

𝑁𝑡
∑  𝑖 ∈ Treatment (𝑚𝑖

(1)
 I(𝑦𝑖

(1)
=−1)−𝛿) − 1

𝑁𝑐
∑  𝑚𝑗

(0)
 𝑗 ∈ Control I(𝑦𝑗

(0)
=−1), or (8a) 

𝜋𝑆 = 1

𝑁𝑡
∑  𝑖 ∈ Treatment 𝑚𝑖

(1)
 I(𝑦𝑖

(1)
=−1) − 1

𝑁𝑐
∑  𝑚𝑗

(0)
 𝑗 ∈ Control I(𝑦𝑗

(0)
=−1) − 𝛿, (8b) 

depending on whether the offer is conditional (8a) or unconditional (8b), where 𝑁𝑡 stands for 

the number of customers in the top S who actually received the retention incentive during the 

randomized experiment, and 𝑁𝑐 is the number of customers in the top S who did not receive it. 

The first part indicates average post-campaign net cash flows (less the action cost) of customers 

in a target of size S that were effectively treated. The second part denotes the average post-

campaign cash flows of customers in a target of size S that were not treated. The difference 

captures the actual per customer impact of the intervention on customers who belong to a target 

of size S. Note that 𝜋𝑆 is an unbiased estimate of the actual profit of the targeting decisions 

conditional on S (Hitsch and Misra 2018). To obtain the total (holdout) profit of the designed 

retention campaign of size S, denoted Π𝑆, we multiply 𝜋𝑆 by the number of customers targeted, 

Π𝑆 = 𝑆𝜋𝑆.      (9) 

Once we know Π𝑆 for every target size S, we select the target size S* that yields the highest 
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holdout profit on the validation sample.12   

5.3. Evaluation Phase: Holdout Profit of the Retention Campaign 

Recall that S* is determined with the validation sample, so strictly-speaking the value 

of Π𝑆∗ on the validation sample is an in-sample measure of the campaign profit. We therefore 

use a third sample (test sample) to evaluate the holdout profit for a campaign of size S*. The 

holdout profit of a campaign of target size S* equals Π𝑆∗, calculated using Equation (9) for S = 

S* on the test sample. 

6. Benchmark Models 

We compare our approach against several benchmarks, including alternative estimation 

methods to rank-order customers and alternative approaches to determining target size.  

6.1. Benchmark Estimation Methods to Rank Customers 

6.1.1. Classic Loss. We estimate a churn model with SGB and the loss function defined 

in Equation (6) and rank customers on the basis of their estimated churn risk (Lemmens and 

Croux 2006).  

6.1.2. Reordered Classic Loss. We reorder the classic loss scores (obtained from 6.1.1.) 

by accounting for the profit that each customer is expected to generate if targeted with a 

retention action. Therefore, we predict the retention probabilities 𝑟̂𝑖
(0)

 and 𝑟̂𝑖
(1)

 using SGB with 

a classic loss function by setting the treatment dummy to 0 or 1, then integrating the estimates 

of post-campaign cash flows 𝑚̂𝑖
(0)

 and 𝑚̂𝑖
(1)

 (estimated with k-nearest neighbors; see Section 

5.1.1), and finally plugging them into the profit lift formulas in Equations (3) or (4). This 

 
12 An alternative to using offline policy evaluation would be to let S* equal the number of customers in the 

validation sample whose profit lifts are predicted positive by the estimation algorithm (here, SGB). However, 

such an approach would be sensitive to the scale of the predicted scores. It would overestimate (underestimate) 

the target size if the model overestimates (underestimates) the number of customers with a positive profit lift. 

Instead, offline evaluation is insensitive to the scale of the predicted scores. The scores only serve to determine 

the ranking of customers, whereas the optimal target size is determined based on the holdout campaign profit. 

This approach is particularly useful when the predicted scores are not scaled (units have no meaning) as is the 

case with most machine learning methods. 
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method is a so-called indirect (two-step) estimation approach (Hitsch and Misra 2018). This 

approach, or some version of it, is typically used by a vast majority of practitioners and scholars 

who are aware that ranking solely based on churn is flawed and that cash flows should also be 

taken into account. 

6.1.3. Uplift Models. We estimate the lift in churn (Ascarza 2018) and the lift in cash 

flows as described in Section 5.1.1., then combine them using Equations (3) or (4). This 

approach does not incorporate a profit-based loss function and corresponds to the first step of 

our estimation procedure.  

6.2. Benchmark Methods to Determine the Optimal Target Size 

6.2.1. Fixed Target Size. Companies often select target sizes by relying on managerial 

judgments or actual churn rates in their industry (i.e., higher churn rate prompts a larger target 

size). For this comparison, we define the target size according to the churn rate in our validation 

sample. Alternatively, we could determine the target size based on the available budget (Datta, 

et al. 2015). Given the action cost, we calculate the number of customers that can be targeted 

with a specific budget. For illustration, we use a budget of 1,000 Euros or dollars. 

6.2.2. Optimized Target Size Using Aggregate Metrics. Verbeke, et al. (2012) calculate 

the optimal target size by combining information about the proportion of churners in the target, 

together with the average profit of targeting a customer. In their study, the probability of 

response to incentives and customer value used to calculate profit are hypothetical and assumed 

to be constant across all individuals. We extend this targeting rule by calculating the average 

treatment effect from the randomized controlled trial. It offers a crude approximation of the 

optimal target size selection we propose.  

6.2.3. Buffer after Optimization. Finally, we consider the possibility that our target size 

optimization might be too restrictive and use an alternative target size that reflects a 10% buffer, 
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such that it is larger than the optimized target size.13 

7. Empirical Applications 

We test our approach on two different customer databases from two different industries. 

The first data corresponds to an interactive television subscription service, provided by a firm 

located in continental Europe and used by Datta, et al. (2015).14  The second data refers to a 

subscription-based membership organization located in North America. 

7.1. Interactive Television Subscription (Europe)  

A major digital television provider in continental Europe offers access to local and 

international digital channels and video-on-demand (VOD) services. Customers pay for 

subscription that includes unlimited usage of the basic iTV service (prices vary from approx. 

€20 to €100 per month depending on the type of service). In addition, customers can buy 

various additional packages (e.g., sports), for which they pay a higher monthly fee that varies 

across packages. Finally, customers can use the VOD rental service, for which they are charged 

on a pay-per-use basis, with an average price of €3 per VOD rental. To increase market 

penetration, the company offers new customers a free trial period of three months. About 40% 

of customers who use this service during the free trial period do not renew the service. 

To decrease this high “churn rate”, the company used an intervention between August 

2006 and July 2007. The retention offer was conditional on renewal, and its cost was about €12 

per targeted customer, in line with practices in other industries.15 Not every subscriber ends the 

free trial period at the same time, so the intervention spanned nine waves, and during each 

wave, some proportion of free trial customers were targeted before the end of their trial period 

(treatment group), while others were not targeted (control group). We cannot identify the 

 
13 We thank a reviewer for this suggestion. 
14 We are extremely grateful to the authors of this paper for sharing their data with us. 
15 Discussions with managers responsible for proactive retention programs confirm similar numbers. For 

example, a North European telecom firm cited an average cost of approximately 7 euros per customer.  
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decision rules used to split the customers, so we used propensity score matching on the samples 

and performed a randomization check before and after the matching to ensure the final 

treatment and control groups are comparable16 (see Web Appendix E for details).  

For each customer in the matched sample (2,595 treated and 2,595 not treated), we observe 

the month in which the retention offer was sent, whether the customer renewed the subscription 

after the intervention,17 the cash flows before and after the intervention, and other demographic 

and usage data (e.g., number of months the individual is a customer of the company, customer 

gender, age, language, household size, income based on zip code, installation method). 

7.2. Special Interest Membership Organization (North America) 

This special interest membership organization offers an annual membership for the right 

to use its services and receive discounts to attend events. The annual fee is approximately $180. 

Each year, the organization sends out renewal letters to customers one month before their 

membership expires. The company ran a field experiment for five consecutive months that 

tested whether adding a thank you gift to the renewal communication increased renewal rates. 

Each month, the company identified customers who were up for renewal and split them 

(randomly and evenly) between a treatment group that received a gift with the letter and a 

control group that received only the renewal letter. The per customer cost of the retention gift 

was about $12. In total, 2,100 customers were involved in the experiment, and 1,044 of them 

were targeted. A randomization check confirms that randomization was done properly (Web 

Appendix E). This data set includes information on the month in which the renewal letter was 

sent, whether the customer renewed for the next year, and demographic and usage 

 
16 The management team has changed since 2007, so we cannot specify the decision rules used previously. 

However, considering the vast customer data and the flexibility of our matching algorithm, we believe matching 

can capture them relatively accurately. The post-matching randomization check confirms that the matched 

treatment and control groups do not differ. 
17 We use two operationalizations to measure churn and cash flow after intervention: (1) one month after the 

intervention, and (2) three months after the intervention. In the empirical section, we present the results for one 

month but using three months does not affect our conclusions. 
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characteristics such as tenure (years), location (state where the member lives), whether the 

subscriber attended any organized or special interest event, and whether the subscriber had 

logged in to the organization’s website.  

7.3. Results 

In the following sections, we compare the performance of a retention campaign with a 

profit-based loss function against the benchmarks from Section 6. We also explore the 

mechanisms that lead to the improved performance of our approach.  

7.3.1. Financial Impact of Retention Campaign. In each bootstrap iteration, we apply 

the integrated profit-based approach described in Section 5, and calculate the corresponding 

holdout profit using Equations (8) and (9). Table 1 contains the average holdout profits over 

all bootstrapped samples for the classic loss function, reordered classic loss function, uplift 

model, and profit-based loss function (our approach). For our approach, we report the results 

for the weighting scheme that gives the highest performance. For Study 1, all three weighting 

schemes give similar results (€4,967 for symmetric weighting, €4,945 for right weighting and 

€5,026 for left weighting). For Study 2, right weighting ($1,328) significantly outperforms 

symmetric weighting ($413) and left weighting (minus $55).18 We also report the bootstrapped 

differences between our approach and alternative ones, as well as the p-values computed from 

the bootstrapped standard errors. 

Insert Table 1 about here 

First, our approach leads to a more profitable retention campaign than all benchmark 

models. In both applications, the differences are highly significant. Note that this is the case 

for all three weighting schemes. In all three cases and both studies, our approach outperforms 

all other benchmarks. For example, in Study 1, the campaign profit for our approach is 168% 

higher than for the classic loss, 300% higher than for the reordered classic loss, and 23% better 

 
18 See Section 7.3.4 for more details on the relative performance of the various weighting schemes. 
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than for the uplift method (which includes both uplift in churn and cash flow but does not use 

a profit-based loss function). In Study 2, our approach is the only one that provides a positive 

campaign profit; all others lead to losses. 

As expected, the classic loss function produces the lowest profit, because it is the only 

estimation method that optimizes a non-profit–related criterion. As we show subsequently 

(Table 3), this method performs better when the assessment criterion reflects the optimization 

criterion (i.e., predicting churn rather than profit lift). By itself, this result confirms our main 

premise: Firms need to align their estimation method, and in particular their loss function, with 

their evaluation criterion, and both should fit their managerial objectives.  

Second, reordering the scores to take the profit lift into account does not improve 

performance. Results for the classic loss and reordered classic loss are very similar to each 

other (as further illustrated by Figure 2 in which both curves follow very similar patterns). In 

general, the two-step reordering approach that minimizes the churn misclassification rate 

across all customers in the first step, and then reorders customers according to their profit lift, 

performs significantly worse than our approach that incorporates customers’ profit in the first 

step. This result corroborates findings by Hitsch and Misra (2018, page 2), who note that 

“methods that are trained to directly predict the incremental effect of targeting yield larger 

profits than conventional methods that indirectly predict the incremental effect based on the 

conditional expectation function that is trained on the outcome level.” For example, predicting 

churn (outcome level) for treated and control customers and then calculating the expected lift 

(incremental effect) is an indirect approach. Indirect approaches underperform direct 

approaches because the estimation uses the wrong metric. Reordering the ranking does not 

compensate for the loss function’s goal of minimizing errors in churn instead of profit lift. 

Third, our approach significantly outperforms the uplift model that does not have profit-

based loss function in estimation. The advantage of our approach over the uplift approach is 
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that it directly estimates the profit lift (the profit lift is the dependent variable) and penalizes 

prediction errors for customers with the largest impact on campaign profits. As such, it aligns 

with firms’ managerial objectives of maximizing campaign profit.  

Fourth, we note that in Study 2, all approaches except our approach yield a negative 

total impact. The retention intervention was very ineffective in the first place and had a negative 

net impact on profits earned from many customers. Despite this condition, the profit-based loss 

function can still identify a target size for which the total profit is positive. 

7.3.2. Impact of Campaign Profits on Firm Revenue and Profit. Based on Table 1, we 

can assess the impact of our approach on the increase in firm profits from a proactive retention 

campaign. In Study 1, our approach generates a per customer profit of €4.63 (€5,026/1,085 

targeted customers). Given that the average annual revenue per customer in this data set is 

about €588, the profit earned from a proactive retention campaign would contribute about 1% 

to the firm’s annual revenue. This is substantial, considering that this profit results from a single 

campaign, captures its effect over a single period ahead, and its impact on firm profit (not 

revenue) would be even higher (e.g., in 2018, operating profit for Comcast in the U.S. was 

about 25% of revenue, which implies that a single retention campaign for the firm in our data 

set could increase its profits by about 4%). In Study 2, our approach generates a per customer 

profit of $4.99 ($1,328/266 targeted customers). Given the annual subscription fee of $180, 

this represents an increase of about 3% in annual revenue from a single campaign. Note, none 

of the other approaches were able to achieve positive campaign profits. In summary, our 

approach has the potential to enhance a firm’s future profits. 

7.3.3. Profit as a Function of Campaign Size. Before we compare various target size 

optimization strategies, we explore how the profit of a campaign varies with its size by 

calculating a holdout cumulative profit for target sizes from 1% to 100% for each of the 

bootstrapped samples. Figure 2 reveals the average profit over all bootstrap samples for the 
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four estimation methods.19 The profit with a 100% target size, when all customers receive a 

retention offer (i.e., it is the same across methods), indicates a positive impact in Study 1 but a 

negative one in Study 2. In the latter case, targeting all customers is not profitable.  

Insert Figure 2 about here 

This analysis confirms the superior performance of our approach and also reveals, at 

least in part, why it works well. For both applications, customers who generate positive profits 

are ranked first. For Study 1, the cumulative profit curve keeps increasing until it reaches its 

peak, at around 60% of the sample. Its slope is positive and larger than the slope of other 

methods, so our approach keeps adding profitable customers to the target, whereas other 

methods add less profitable or non-profitable ones. In Study 2, the overall poor impact of the 

intervention leads to a slightly different figure but similar conclusions. Our approach is the 

only one to achieve a positive campaign profit with small target sizes, because customers who 

contribute to the profit of the campaign are included first. The uplift model is the second best 

alternative, but it fails to rank high-profit customers first and thus requires a much larger target 

size—including a fair share of negative profit lift customers—before it reaches its maximum 

value (which is close to zero and far inferior to our approach). Finally, the profit curve for the 

classic loss function provides a good visualization of the problem of focusing on churn. Most 

customers who contribute to campaign profit are ranked low. For Study 1, the slope of the 

classic loss is largest from 90% to 100%; for Study 2, it is only positive from 70% to 80%. A 

different way of looking at it consists of decomposing, for each decile, the average treatment 

effect into the actual profit of a customer in the treatment group and the actual profit of a 

customer in the control group (see Web Appendix F) 

 
19 Note that the profit figures in Table 1 do not directly correspond to Figure 2. The former figures are obtained 

by determining the optimal target size per bootstrap iteration such that we obtain 100 holdout campaign profit 

measures. This approach allowed us to test whether two approaches perform significantly differently from each 

other. In contrast, Figure 2 does not fix the target size but averages the profit curves obtained at each iteration. 

The latter is useful to see how the profit evolves with the campaign size. 
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7.3.4. The Role of Weighting. To complement these results and gain further insights into 

the role of the weighting scheme on the performance of our approach, we explore the relative 

performance of symmetric, right and left weighting for both applications. Figure 3 reveals their 

average profit over all bootstrap samples as a function of campaign size. Results are in line 

with those from the Monte Carlo simulation (Web Appendix B). The relative performance of 

the three weighting schemes depends on the distribution of the expected profit lift, and confirms 

that it is more beneficial to put greater weight on the under-represented part of the distribution. 

For Study 1, the share of customers with a negative expected profit lift (as inputted in the profit-

based loss function) is slightly inferior to the proportion of customers with positive expected 

profit lifts (68% positive, 32% negative). As a result, left weighting slightly outperforms the 

other schemes (see Section 7.3.1). In contrast, customers with a positive expected profit lift (as 

inputted in the profit-based loss function) in Study 2 are largely under-represented (17%), so 

right weighting is far more profitable than the other schemes. Figure 3 illustrates the function 

of the weighting scheme with regard to the performance of the prediction algorithm. 

Insert Figure 3 about here 

7.3.5. Determining Target Size. In Table 2, we compare the holdout profit of our target 

size optimization approach (Section 5.2) to the benchmarks (Section 6.2). For more details on 

the determination of the target size, we refer readers to Web Appendix G.  

Insert Table 2 about here 

As expected, fixed target sizes determined prior to the estimation lead to significantly 

lower profits than our optimization strategy. Targeting as many customers as the number of 

expected churners or using a fixed budget is not a good strategy. Fixing the target size based 

on the churn rate offers 17% and 77% less profit than the optimized target size in Study 1 and 

Study 2. The fixed budget constraint leads to 92% and 77% less profit than the optimized target 

size in the two studies. In addition, our optimization strategy is superior to Verbeke et al.’s 
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(2012) optimization approach, which determines the target size on the basis of aggregate 

metrics that do not reflect customer heterogeneity in profit lift. Their approach yields 93% and 

84% less profit than the optimized target size. Finally, in contrast with common practice, it is 

not preferable to add a buffer of customers to the retention campaign to ensure the target 

includes “good” ones. Doing so actually decreases the profit of the campaign by 3% and 47% 

for Study 1 and Study 2 respectively, because it adds non-profitable customers. 

7.3.6. Overlap of Customer Rankings. To understand the differences among various 

estimation methods, we investigate the extent to which the target identified by our approach 

overlaps with the targets of other estimation methods (see Ascarza 2018 for a similar approach). 

We rank-order customers according to the scores obtained by the various methods and split the 

four rankings into 10 deciles (the first decile corresponds to priority customers for targeting). 

For each decile, we then calculate the percentage overlap in customers targeted across methods. 

Figure 4 reveals the percentage overlap between our approach and all three alternatives. For 

instance, it indicates that almost 30% of the customers in the first decile provided by our (profit-

based loss) approach also belong to the first decile provided by the uplift model (line with +). 

A value of 100% would mean that both groups perfectly overlap (i.e., the two approaches are 

identical in identifying profitable customers), whereas the 45-degree line represents a situation 

where the overlap between groups is purely due to chance. Figure 4 shows that the level of 

customer overlap between our approach (profit loss) and the classic loss or reordered classic 

loss functions is close to random. In other words, our approach ranks customers very differently 

than these alternative rankings because they rely on different criteria. The greatest customer 

overlap is between our approach and the uplift model, but even this overlap is limited. 

Insert Figure 4 about here 

The higher profits obtained by our approach reflects contributions from customers who 

do not overlap, because this method identifies more profitable customers and excludes 
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customers who have detrimental effects on total profits. 

7.3.7. Drivers of churn vs. drivers of profit lift. The differences between the profit-based 

and the classic loss functions translate into discrepancies in the factors explaining churn vs. 

those that explain profit lift. We compute the relative variables’ importance for both approaches 

(Friedman 2001). In Study 1, household income contributes to almost 50% of the 

“performance” of the profit loss solution compared to only 11% for the classic loss solution, 

after the treatment dummy (19%) and one of the sport package dummies (17%). In Study 2, 

customers’ geographical location (48% for the profit loss vs. 25% for the classic loss) and 

tenure (28% for the profit loss vs. 58% for the classic loss) are the main drivers of profit lift 

and churn, but in different proportions. 

7.3.8. Model aligned with managerial objective. The additional profits earned with the 

profit-based loss function do not imply that it should be used in all circumstances. Table 3 

reports the holdout gini coefficient and top decile lifts for both studies, averaged across all 

bootstrap samples. The top decile lift measures the accuracy of the model in predicting churn 

among the top 10% riskiest customers. In turn, the gini coefficient provides a measure of model 

accuracy in predicting churn for the entire customer base. The higher the top decile lift and gini 

coefficient, the better the model predicts churn (see Lemmens and Croux (2006) for detailed 

definitions of these metrics).  

Insert Table 3 about here 

The (reordered) classic loss function provides the most accurate predictions of customer 

churn behavior, because it is the only approach that seeks to minimize errors in churn prediction 

without considering other dimensions of customer profit. This shows that, if the goal is to 

accurately predict churn, the classic loss function is the best, but if the goal is to maximize 

retention campaign profit, our approach is more suitable.   

7.3.9. Replication for other estimation methods. Finally, we replicate our results for a 
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different estimation approach. Namely, we compare the performance of a logistic regression 

(classic loss) and a weighted regression (profit loss) with the weights defined in equations (3)-

(4). The profit loss offers significantly (p < .01) larger holdout profits than the classic loss in 

both studies. In Study 1, €3,331 for the classic loss and €4,907 for the profit loss; in Study 2, 

minus $1,112 for the classic loss and $416 for the profit loss. This replication confirms that the 

loss function’s choice drives the improvement in profits regardless of the estimation approach. 

8. Conclusion, Limitations, and Further Research 

We propose a method to optimize the profit of proactive retention campaigns. Our 

approach defines the profit lift of a retention intervention according to the potential outcome 

framework for causal inference (Rubin 2005). We demonstrate the benefits of using a profit-

based loss function in estimating the financial impact of a targeted marketing intervention. Our 

findings highlight the need for marketing academics and practitioners to pay attention to the 

choice of loss function, a feature that is often neglected in model estimation processes. In 

particular, this choice should match managers’ objectives. 

Our approach potentially fits many contexts, within and outside marketing, where 

organizations seek to target a set of individuals with a specific intervention (e.g., catalog, mail, 

charitable giving, and personalized promotions). Estimating heterogeneous treatment effects is 

an exciting topic, featured in studies across economics and econometrics (Imbens and Rubin 

2015), management (Godinho de Matos, et al. 2017), and computer science (Pearl and 

Mackenzie 2018). For each application, it is critical to carefully determine the appropriate loss 

function. When building their own “goal-oriented” loss functions, decision makers should (1) 

ensure that the margin specifies the true outcome of interest (i.e., goal of the intervention) and 

(2) use a weighting scheme that prioritizes customers who have the largest impact on the 

success of the intervention. This is relevant even in non-profit contexts, such as for predicting 

patient compliance with medical treatments. In this case, the loss function could incorporate 
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patient-specific health risks and benefits associated with complying with the medical treatment. 

Our results also show that the optimization of the target size of a retention campaign 

has a significant impact on profits. Retention literature is surprisingly silent on this topic; it 

mostly focuses on ranking customers. We find that selecting a target size that maximizes the 

campaign profit leads to significantly more profitable campaigns than using the common rules. 

We thus hope managers attend to not only the estimation method used to rank customers but 

also the number of customers to target.  

Several limitations of this paper offer fruitful research opportunities. First, our approach 

can rank-order customers according to the profit lift they produce, in response to a specific 

retention campaign. Both field experiments reflect a single, specific retention incentive, in line 

with recent attempts to estimate heterogeneous treatment effect models for customer 

relationship management (Ascarza 2018, Hitsch and Misra 2018, Provost and Fawcett 2013). 

An interesting further challenge would be to explore variations in customer responses 

depending on the type and depth of retention interventions, then determine the costs at which 

each response is maximized (Venkatesan, et al. 2007). Firms might estimate consumers’ profit 

lift distributions for various costs by testing various retention incentives, then use these 

estimates to determine the optimal intervention per customer.  

Second, our approach does not consider the long-run impact of retention interventions. 

Assumptions of unconfoundness make it difficult and impractical to estimate the profit lift of 

a single intervention over a long period of time. Managers are often unwilling to isolate a group 

of customers from any marketing intervention for a long time period. Concerns about legal 

customer privacy protections, which mandate that companies may only keep customer data for 

the shortest amount of time possible, also complicate experiments that run for long periods.20  

 
20 https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations/principles-

gdpr/how-long-can-data-be-kept-and-it-necessary-update-it_en  

https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations/principles-gdpr/how-long-can-data-be-kept-and-it-necessary-update-it_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations/principles-gdpr/how-long-can-data-be-kept-and-it-necessary-update-it_en
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Third, we do not model whether a customer’s sensitivity to an intervention depends on 

expectations of retention offers in the future (Lewis 2005a). In digital, connected economies, 

customers are more aware of the attractive discounts that others receive when they indicate an 

intention to churn. This phenomenon of strategic churning is an interesting area for research 

and could be captured using dynamic structural models (Khan, et al. 2009).  

We hope our work will foster more research in the area of predicting the individual 

treatment effects and remind the reader of the importance of aligning the loss function used for 

model estimation with the managerial objectives of the campaign.   
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Table 1. Average campaign holdout profit for different estimation methods (and 

bootstrapped differences with profit-based loss) 

 

 

 

Study 1: Interactive Television 

Subscription 

 Study 2: Special Interest 

Membership Organization 

Estimation Method 

 Holdout Profit  

(in Euro)  

 Difference  

(p-value) 

  Holdout Profit  

(in US$)  

 Difference  

(p-value)  

Classic Loss  € 1,872.23   3,154 (.000)   $ (1,669.37)  2,997 (.000) 

Reordered Classic Loss  € 1,253.74   3,773 (.000)   $ (1,709.16)  3,037 (.000) 

Uplift Model  € 4,092.97   933 (.000)   $ (1,305.07)  2,633 (.000) 

Our Approach  € 5,026.36     $ 1,327.76   

 

Notes: The last row “our approach” refers to the results provided by the profit-based loss function. The 

“holdout profit” column reports the average holdout profit obtained across all bootstrapped iterations. 

The “difference” column reports the bootstrapped difference between the holdout profit given by our 

approach and each alternative approach, together with the p-values (in parentheses) obtained using the 

bootstrapped standard errors. All reported differences are significant at the 1% probability level. 

 

 

Table 2. Average holdout campaign profit for different target size determination 

methods (and bootstrapped differences with profit-based loss) 

 

 

 
Study 1: Interactive 

Television Subscription 

 Study 2: Special Interest 

Membership Organization 

Target Size Determination 

Holdout Profit 

(in Euro)  

Difference  

(p-value) 

 Holdout Profit  

(in US$) 

Difference  

(p-value) 

Fixed Target Size:      

Based on Churn Rate € 4,164.06 862 (.000)  $ 308.56 1,019 (.000) 

Based on Budget € 398.76 4,628 (.000)  $ 304.98 1,023 (.000) 

Optimized Target Size:      

Based on Verbeke € 345.46 4,681 (.000)  $ 207.94 1,120 (.000) 

10% Buffer € 4,882.36 144 (.001)  $ 700.28 627 (.010) 

Our Approach € 5,026.36   $ 1,327.76  

 

Notes: The table provides the results of the profit-based loss function using the fixed and optimized 

target size selection approaches described in Section 6.2. The last row “our approach” refers to the 

proposed optimized target size selection using offline evaluation (Section 5.2.). The “holdout profit” 

column reports the average holdout profit obtained across all bootstrapped iterations. The “difference” 

column reports the bootstrapped difference between the holdout profit given by our target size 

optimization approach and each alternative approach, together with p-values (in parentheses) obtained 

using the bootstrapped standard errors. All reported differences are significant at the 1% probability 

level. 
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Table 3. Average holdout churn predictive accuracy for different estimation methods 

 

 
Study 1: Interactive 

Television Subscription 

 Study 2: Special Interest 

Membership Organization 

Estimation Method 

Gini 

Coefficient 

 Top Decile 

Lift  

 

Gini Coefficient 

 Top Decile 

Lift  

Classic Loss .277 2.014  .102 1.183 

Reordered Classic Loss .218 1.820  .110 1.215 

Uplift Model .150 1.435  -.027 .011 

Our Approach .142 1.291  -.016 .084 

 
Notes: The table reports the average gini coefficients and top decile lifts obtained across all bootstrapped 

iterations. The last row “our approach” refers to the results provided by the profit-based loss function.   
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Figure 1: Profit-based analysis step by step
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Figure 2. Average holdout campaign profit as a function of target size for different 

estimation methods 

A. Study 1         B. Study 2 

 
Notes: The curves represent the holdout profits of the campaign averaged over all bootstrap 

iterations. The horizontal grey dashed line represents a campaign targeting everyone. 
 

 

Figure 3. Average holdout campaign profit as a function of target size for different 

weighting schemes 

A. Study 1         B. Study 2 

 
Notes: The curves represent the holdout profits of the campaign averaged over all bootstrap 

iterations. The horizontal grey dashed line represents a campaign targeting everyone. 

 

  



 
 

Page 39 
 

Figure 4. Average percentage customers overlapping for different estimation methods 

 

A. Study 1         B. Study 2 

 
Notes: The 45% line corresponds to the level of overlap between two random rankings.  
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Web Appendix A. Equivalence of Log-Likelihood and Loss Function 

 

Let  𝑦̃𝑖 = 1 for a churner and 𝑦̃𝑖 = 0 for a non-churner. The log-likelihood over all customers 

i=1,.., n can be written as 

𝑙𝑜𝑔𝐿 = ∑{𝑦̃𝑖log 𝑝(𝑥𝑖) + (1 − 𝑦̃𝑖)log (1 − 𝑝(𝑥𝑖))}

𝑁

𝑖=1

.                            (A1) 

When converting the dependent variable 𝑦̃𝑖 to 𝑦𝑖 = 1 for a churner and 𝑦𝑖 = −1 for a non-

churner using the transformation 𝑦̃𝑖 = (𝑦𝑖 + 1)/2, we can rewrite the log-likelihood as 

𝑙𝑜𝑔𝐿 = − ∑ log (1 + exp(−2𝑦𝑖𝐹(𝑥𝑖)))

𝑁

𝑖=1

.                                            (A2) 

proving the relationship between equation (7) and equation (8) in the paper. The proof is as 

follows. Using 𝑦𝑖 instead of 𝑦̃𝑖, replacing the probabilities 𝑝(𝑥𝑖) by the scores 𝐹(𝑥𝑖) and 

using the logistic (i.e. inverted-logit) formula in footnote 5, equation (A1) becomes  

  

𝑙𝑜𝑔𝐿 = ∑ {
(𝑦𝑖 + 1)

2
log (

1

1 + exp(−2𝐹(𝑥𝑖))
 )

𝑁

𝑖=1

+
(1 − 𝑦𝑖)

2
log (1 − (

1

1 + exp(−2𝐹(𝑥𝑖))
 ))} .                    (A3) 

 

Using the proprieties of the log function, we can rewrite (A3) into 

𝑙𝑜𝑔𝐿 = ∑ {−
(𝑦𝑖 + 1)

2
log(1 + exp(−2𝐹(𝑥𝑖)) ) +

(1 − 𝑦𝑖)

2
log (exp(−2𝐹(𝑥𝑖)))

𝑁

𝑖=1

−
(1 − 𝑦𝑖)

2
log (1 + exp(−2𝐹(𝑥𝑖)))} .                                                            (A4) 

 

After factoring out the factor common to the first and third terms and simplifying the second 

term, we obtain 

𝑙𝑜𝑔𝐿 = ∑{− log(1 + exp(−2𝐹(𝑥𝑖)) ) + (𝑦𝑖 − 1)𝐹(𝑥𝑖)}

𝑁

𝑖=1

                                   (A5) 

 

= − ∑ {log(1 + exp(−2𝐹(𝑥𝑖)) ) − log (exp((𝑦𝑖 − 1)𝐹(𝑥𝑖)))} .

𝑁

𝑖=1

           (A6) 

 

Using again the proprieties of the log and exponent functions, we can rewrite (A6) into 

𝑙𝑜𝑔𝐿 = − ∑ log (
1 + exp(−2𝐹(𝑥𝑖)) 

exp((𝑦𝑖 − 1)𝐹(𝑥𝑖))
)

𝑁

𝑖=1

 

= − ∑ log[(1 + exp(−2𝐹(𝑥𝑖)))exp(−(𝑦𝑖 − 1)𝐹(𝑥𝑖))].

𝑁

𝑖=1

                   (A7) 
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After distributing exp(−(𝑦𝑖 − 1)𝐹(𝑥𝑖)) across the sum (1 + exp(−2𝐹(𝑥𝑖))), we obtain 

𝑙𝑜𝑔𝐿 = − ∑ log[exp(−(𝑦𝑖 − 1)𝐹(𝑥𝑖)) + exp(−2𝐹(𝑥𝑖) − (𝑦𝑖 − 1)𝐹(𝑥𝑖))]

𝑁

𝑖=1

 

= − ∑ log (exp(−𝑦𝑖𝐹(𝑥𝑖) + 𝐹(𝑥𝑖)) + exp(−𝐹(𝑥𝑖) − 𝑦𝑖𝐹(𝑥𝑖)))

𝑁

𝑖=1

.     (A8) 

 

Using again the properties of the exponents function, we get 

𝑙𝑜𝑔𝐿 = − ∑ log (exp(−𝑦𝑖𝐹(𝑥𝑖))exp(𝐹(𝑥𝑖))

𝑁

𝑖=1

+ exp(−𝐹(𝑥𝑖))exp(−𝑦𝑖𝐹(𝑥𝑖))) .                                               (A9) 

 

Factoring out exp(−𝑦𝑖𝐹(𝑥𝑖)), (A9) becomes 

𝑙𝑜𝑔𝐿 = − ∑ log (exp(−𝑦𝑖𝐹(𝑥𝑖)) (exp(𝐹(𝑥𝑖)) + exp(−𝐹(𝑥𝑖))))

𝑁

𝑖=1

.           (A10) 

 

Bringing in the negative sign into the logarithm, 

  

𝑙𝑜𝑔𝐿 = ∑ log (
exp(𝑦𝑖𝐹(𝑥𝑖))

exp(𝐹(𝑥𝑖)) + exp(−𝐹(𝑥𝑖))
)

𝑁

𝑖=1

.                                                 (A11) 

 

Given that 𝑦𝑖 = 1 or 𝑦𝑖 = −1, exp(𝐹(𝑥𝑖)) + exp(−𝐹(𝑥𝑖)) is equivalent to exp(𝑦𝑖𝐹(𝑥𝑖)) +

exp(−𝑦𝑖𝐹(𝑥𝑖))  

 

𝑙𝑜𝑔𝐿 = ∑ log (
exp(𝑦𝑖𝐹(𝑥𝑖))

exp(𝑦𝑖𝐹(𝑥𝑖)) + exp(−𝑦𝑖𝐹(𝑥𝑖))
) .

𝑁

𝑖=1

                                         (A12) 

 

Given the corollary (Hastie, Tibshirani, and Friedman 2009, p. 346), 

 
exp(𝐴)

exp(𝐴) + exp(−𝐴)
=

1

1 + exp(−2𝐴)
                                       (A13) 

 

A12 is equivalent to 

 

𝑙𝑜𝑔𝐿 = ∑ 𝑙𝑜𝑔 (
1

1 + 𝑒𝑥𝑝(−2𝑦𝑖𝐹(𝑥𝑖))
)

𝑁

𝑖=1

 

= − ∑ log (1 + exp(−2𝑦𝑖𝐹(𝑥𝑖)))

𝑁

𝑖=1

.                                (A14) 
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Web Appendix B. Monte Carlo Simulation: Weighted vs. Unweighted SGB 
 

In this Monte Carlo simulation study, we study the relative prediction bias and efficiency of 

SGB when using a weighted loss function vs. an unweighted loss function. Let 𝑧𝑖 be the 

dependent variable of interest (e.g. profit lift) and 𝐹(𝑥𝑖) be the estimated scores given a set of 

covariates 𝑥𝑖 for customer i. The (un)weighted loss function is defined as  

 

Ψ𝑖 = 𝑤𝑖𝑙𝑜𝑔(1 + 𝑒−2𝑧𝑖𝐹(𝑥𝑖))      (B1) 

 

with 𝑤𝑖 = 1 for all customers i for the unweighted estimator. As explained in Section 4.2, we 

consider three weighting schemes for the weighted estimator: 

 

(1) Symmetric weighting: 𝑤𝑖 = |𝑧𝑖| for all customers i, 

(2) Right weighting: 𝑤𝑖 = |𝑧𝑖| for 𝑧𝑖 ≥ 1 and 𝑤𝑖 = 1 otherwise, 

(3) Left weighting: 𝑤𝑖 = |𝑧𝑖| for 𝑧𝑖 ≤ 1 and 𝑤𝑖 = 1 otherwise. 

 

Following Carsey and Harden (2013), we simulate the data using the following data generating 

process: 

 

𝑧𝑖 = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑖 + 𝜀𝑖      (B2) 

 

with 𝑥𝑖 drawn from a random uniform 𝑈(−1,1). We assume heterogeneous parameters 𝛽0𝑖 =
𝛽0 + 𝑢0𝑖 and 𝛽1𝑖 = 𝛽1 + 𝑢1𝑖 with 𝛽0 = 2 and 𝛽1 = 5, and 𝑢0𝑖, 𝑢1𝑖 respectively drawn from a 

random uniform 𝑈(− 𝛽0 4⁄ , 𝛽0 4⁄ ) and 𝑈(− 𝛽1 4⁄ , 𝛽1 4⁄ ). Finally, we add random noise 

𝜀𝑖~𝑁(0, 𝜎𝑖
2) with 𝜎𝑖

2 = 𝜃2var(𝛽0𝑖 + 𝛽1𝑖𝑥𝑖). We control the signal-to-noise ratio by varying 𝜃 

(see below). 

 

Simulation Study 1. Relative Prediction Bias  

 

In the first simulation study, we set the sample size n = 5,000 observations and the signal-to-

noise ratio to 2:1, i.e. 𝜃 = .5. We generate 1,000 data sets using Equation (B2). For each 

weighting scheme 𝑘 = 1, 2 and 3 defined above, we calculate the relative prediction bias 

(RPB) of the weighted estimator compared to the unweighted estimator u for each observation 

i as 

 

𝑅𝑃𝐵𝑖𝑘 = log |
𝑧̂𝑖𝑘−𝑧𝑖

𝑧̂𝑖𝑢−𝑧𝑖
|.       (B3) 

 

Tofallis (2015) recommends the logarithm to limit the impact of extremely large values, which 

tend to occur when z is close to zero. A positive (negative) value indicates that the prediction 

for observation i obtained using weighing scheme k underperforms (outperforms) the 

prediction of the unweighted estimator. We investigate how this relative individual bias varies 

as a function of 𝑧𝑖 by fitting a generalized additive model with smoothing splines. Figure B1 

shows the fitted curves, together with the two standard error confidence intervals (not visible 

here because they are narrow) for all three weighting schemes. 

 

The Monte Carlo simulation shows that the weighted estimators provide a smaller prediction 

bias than the unweighted estimator for the observations that get the highest weights. In contrast, 

observations with the lowest weights are predicted less accurately using a weighted estimator 

than when using an unweighted estimator. In particular, the symmetric weighting scheme offers 
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more accurate predictions on both extremes of the dependent variable distribution (RPB < 0). 

Instead, the right and left weighting offer better predictions only on one side of the dependent 

variable distribution, with the right weighting scheme performing best for the most positive 

values of z and the left weighting scheme for the most negative values of z. These figures 

illustrates the “bias reallocation mechanism” induced by weighting some observations more 

than others. On average, the weighted estimator does not predict better than the unweighted 

estimator. However, it does so locally for the most heavily weighted observations. Thus, 

introducing weights into the loss function provides a way to control where the observations 

should be predicted with the highest accuracy. This feature is useful in settings such as retention 

management campaigns where some customers have a largest impact than others on the 

performance of the campaign. 

 

Figure B1. Relative Prediction Bias of the Weighted vs. Unweighted SGB Estimators 

 

 (1) Symmetric Weighting (2) Right Weighting (3) Left Weighting 

 
 

Simulation Study 2. Relative Efficiency  

 

In the second simulation study, we investigate the relative efficiency of the weighted estimators 

vs. the unweighted estimator using SGB as in Study 1. In particular, we focus on how the 

relative efficiency is affected by the sample size, the share of positive vs. negative values of 

the dependent variable, the amount of noise in the data generating process as well as the 

concentration of the weights. To do so, we use the following design. We vary the sample size 

n from 1,000, 5,000, 10,000, 50,000 and 100,000 observations, the proportion of positive 

values of the dependent variable (pp) from 25%, 50% to 75%, and the signal-to-noise ratio 

from 2:1, 3:2, 1:1 and 1:2 (that is, 𝜃 = 1/2, 2/3, 1, 2). Finally, we vary the presence of extreme 

values of z using different distributions of the error term. In addition to the Normal distribution, 

we use a Student’s t distribution with one degree of freedom (fatter tails, i.e. more extremes) 

and a Truncated Normal distribution with truncation at the 1st and 3rd quartile of the equivalent 

Normal distribution (shorter tails, i.e. less extremes). These distributions differ in the share of 

observations that contribute to 80% of the sum of all positive z values: about 13% for the 

Student’s t, 26% for the Normal, and 29% for the Truncated Normal,21 while preserving an 

equal proportion of positives vs negatives (pp = 50%). We generate 1,000 data sets for each 

cell of the design. 

 

 
21 In our application, the number of customers that contribute to 80% of the sum of all positive profit lifts. 
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Given the results from the first simulation study, we can compare the efficiency of two biased 

estimators by looking at the ratio of their mean squared errors. The latter captures the trade-off 

between the squared bias of the estimator and its variance (Hastie, Tibshirani, and Friedman 

2009). For each weighting scheme 𝑘 = 1, 2 and 3 defined above, we calculate its mean squared 

prediction error over the S iterations, 

 

𝑀𝑆𝐸𝑘 =
1

𝑆𝑛
∑ ∑ [(𝑧̂𝑖𝑠

𝑘 − 𝑧𝑖𝑠)
2

]𝑛
𝑖=1

𝑆
𝑠=1  ,     (B4) 

 

and define the relative efficiency of estimator k with respect to the unweighted estimator u as 

 

𝑅𝐸𝑘 =
𝑀𝑆𝐸𝑢

𝑀𝑆𝐸𝑘
 .       (B5) 

 

A value of 𝑅𝐸𝑘 smaller than one indicates that the unweighted estimator u is relatively more 

efficient that the weighted estimator k. In contrast, a value 𝑅𝐸𝑘 larger than one indicates that 

the weighted estimator is relatively more efficient. In addition, we also evaluate the efficiency 

of the estimators over two subsets of the data: (i) the positive values of z only, (ii) the negative 

values of z only. Given the results of the first simulation study, the right and left weighing 

schemes are expected to behave differently on each of the subsamples. Formally, we define 

 

𝑀𝑆𝐸𝑘
+ =

1

𝑆𝑛
∑ ∑ [(𝑧̂𝑖𝑠

𝑘 − 𝑧𝑖𝑠)
2

]𝑛
𝑖=1

𝑆
𝑠=1  for all 𝑧𝑖𝑠 ≥ 0        (B6) 

𝑀𝑆𝐸𝑘
− =

1

𝑆𝑛
∑ ∑ [(𝑧̂𝑖𝑠

𝑘 − 𝑧𝑖𝑠)
2

]𝑛
𝑖=1

𝑆
𝑠=1  for all 𝑧𝑖𝑠 < 0,         (B7) 

 

and 𝑅𝐸𝑘
+ =

𝑀𝑆𝐸𝑢
+

𝑀𝑆𝐸𝑘
+   𝑎𝑛𝑑 𝑅𝐸𝑘

− =
𝑀𝑆𝐸𝑢

−

𝑀𝑆𝐸𝑘
− .          (B8) 

 

Results are reported in Table B1. The left panel reports 𝑅𝐸𝑘, 𝑅𝐸𝑘
+ and 𝑅𝐸𝑘

− for varying sample 

sizes n for an equal proportion of positive and negative values of z (pp = 50%) and a signal-to-

noise ratio of 2:1 (𝜃 = .5). The middle panel reports the same metrics for varying proportions 

of positive values of the dependent variable (pp) given a sample size n = 5,000 and a signal-to-

noise ratio of 2:1 (𝜃 = .5). Finally, the right panel reports the same metrics for varying signal-

to-noise ratios 𝜃 for a sample size n = 5,000 and an equal proportion of positive and negative 

values of z (pp = 50%). In bold, we depict the cases where the weighted estimator is more 

efficient than the unweighted estimator (RE larger than one). 

 

Simulation results show that, on average, weighted estimators are less efficient than the 

unweighted estimator. Weighing dilutes the information leading to efficiency loss. The 

efficiency loss is most pronounced for small sample sizes. In contrast, increasing the sample 

size slightly compensates for the efficiency loss. The larger the sample size, the less impact 

any weighing scheme has on the estimation (Chambers 1996). Results are consistent for all 

three weighing schemes. 

 

Positive vs. Negative Observations 

More interesting results come from comparing the efficiencies for the positive and negative 

values of z. Table B1 shows that, even though weighted estimators are relatively inefficient on 

average, they actually are relatively more efficient than the unweighted estimator for the 

observations that receive the largest weights. For n = 1,000, the estimator based on right 

weighing is 25% more efficient than the unweighted estimator for the positive observations. 

Likewise, the estimator based on left weighing is 24% more efficient than the unweighted 
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estimator for the negative observations. This increase in efficiency comes at a cost of a lower 

efficiency for the observations that are weighted the least. Note that, for the symmetric weights, 

we do not find differences between the positive and negative values of z for the simple reason 

that it weights both equally. Instead, the efficiency for the largest values of z (both negative 

and positive) is larger than the efficiency for the values of z close to zero (detailed results are 

available upon request). 

 

Sample Size 

Importantly, the respective benefits of right and left weighing vary with the sample size. Table 

B1 shows that the respective benefits of right and left weighing are most prominent for small 

sample sizes. As mentioned above, the impact of weighing become smaller for large sample 

sizes. In practice, uplift models commonly rely on small samples as they require randomized 

control trials. We therefore expect a substantial impact of weighting in such contexts.  

 

Share of Positive vs. Negative Observations 

Weighting is also most beneficial when the share of the heavily weighted observations is small. 

In particular, the relative efficiency of the estimator based on right weighing (respectively, left 

weighing) is over 50% superior to the unweighted estimator for 25% positive (respectively, 

negative) observations for a sample size n = 5,000. Weighting acts in the same fashion as 

oversampling does, and works best when “balancing” the various parts of the expected profit 

lift distribution (Donkers et al. 2003, Solon et al. 2005). The smaller the set of customers 

reacting positively to a retention campaign, the more important to weight (i.e. as a way to 

resample) them more. Intuitively, the expected profitability of the campaign depends more 

critically on the share of customers with a positive profit lift when this share of customers is 

proportionally small.  

 

Signal-to-Noise Ratio 

The relative efficiency of the weighted estimator also depends on the amount of noise in the 

data. Our simulations show that the noisier the data, the larger the relative efficiency of 

weighing for the observations that are most heavily weighted. In real-life applications, the 

signal-to-noise ratios of retention and uplift models tend to be very small (Ascarza et al. 2018), 

which would imply large effects of weighting. 

 

Presence of Extremes 

The advantage of weighting gets smaller in presence of more extreme z values. Under the 

Student’s t distribution, very few (about 13%) observations contribute to 80% of the sum of all 

positive z values (the same holds for the negative values). In such cases, few cases will receive 

a larger weight than the rest and have a disproportionally large influence on the estimator. 

Instead, under the Truncated Normal distribution, more (about 29%) observations generate 

80% of the sum of all positive z values (the same holds for the negative values). Therefore, the 

estimator will be influenced by a larger set of cases. As a result, right (resp. left) weighting 

gives more efficient estimators across the range of all positive (resp. negative) values of z (not 

just the most extreme ones). 

 

Conclusions 

The simulations indicate that weighing leads to efficiency loss at the aggregate level, but at the 

same time, offers substantial efficiency gains for the most heavily weighted observations. The 

benefits of weighing are particularly large when the most heavily weighted observations are 

under-represented. The proportion of customers for whom one expects a positive vs. negative 

profit lift thus provides an indication as to which of the weighting schemes is the most 
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appropriate for a given application. Our empirical applications confirm this result (see Section 

7.3). Finally, differences between weighted and unweighted estimators tend to disappear for 

very large sample sizes and/or very large signal-to-noise ratios. 
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Table B1. Relative Efficiency of the Weighted Estimators w.r.t the Unweighted Estimator, as a Function of the Sample Size n, 

Percentage of Positive Observations pp and Signal-to-Noise Ratio 𝜽. 

 

 

Sample Size n 

(pp = 50% and 𝜃 = .5)  

% Positives pp 

(n = 5,000 and 𝜃 = .5) 

 Noise-to-Signal Ratio 𝜃 

(n = 5,000 and pp = 50%)  

Presence of Extremes 

(n = 5,000, pp = 50% and 𝜃 = .5) 

 1,000 5,000* 10,000 50,000 100,000  25% 50%* 75% 

 

1/2* 2/3 1 2  

Student’s t 

Distribution 

Normal 

Distribution* 

Truncated 

Normal 

All Observations          
     

    

Symmetric Weighing 0.840 0.836 0.841 0.846 0.847  0.858 0.836 0.857 
 

0.836 0.818 0.816 0.877  0.508 0.836 0.904 

Right Weighing 0.194 0.202 0.201 0.211 0.213  0.093 0.202 0.452 
 

0.202 0.257 0.320 0.377  0.387 0.202 0.235 

Left Weighing 0.194 0.203 0.207 0.210 0.213  0.455 0.203 0.095 
 

0.203 0.257 0.321 0.375  0.963 0.203 0.234 

          
 

        

Positive Observations          
 

        

Symmetric Weighing 0.829 0.832 0.842 0.846 0.847  0.821 0.832 0.871 
 

0.832 0.818 0.816 0.882  0.533 0.832 0.903 

Right Weighing 1.256 1.137 1.108 1.098 1.092  1.549 1.137 1.046 
 

1.137 1.225 1.411 1.705  0.419 1.137 1.803 

Left Weighing 0.106 0.111 0.114 0.116 0.118  0.179 0.111 0.070 
 

0.111 0.144 0.180 0.210  0.961 0.111 0.125 

          
 

        

Negative Observations          
 

        

Symmetric Weighing 0.851 0.839 0.840 0.846 0.847  0.872 0.839 0.821 
 

0.839 0.819 0.815 0.873  0.166 0.839 0.905 

Right Weighing 0.104 0.111 0.111 0.117 0.118  0.070 0.111 0.178 
 

0.111 0.143 0.182 0.212  0.089 0.111 0.125 

Left Weighing 1.235 1.133 1.123 1.094 1.090  1.051 1.133 1.539 
 

1.133 1.230 1.417 1.702  1.048 1.133 1.822 

          
 

        

Notes: In bold, we depict the cases where the weighted estimator is more efficient than the unweighted estimator (RE larger than one). The columns with a * correspond to the 

same condition of the simulation design (i.e., n = 5,000; pp = 50%; 𝜃 = .5; Normal distribution).
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Web Appendix C. Regression Trees 

 

Trees (called CART; Breiman et al. 1983) have been very popular among marketing practitioners 

(Verhoef et al. 2003). These nonparametric models are graphically insightful. However, they are 

somewhat less known among marketing academics (see Risselada, Verhoef, and Bijmolt 2010 or 

Schwartz, Bradlow, and Fader 2014, for exceptions). Let 𝑇(𝑥, Θ) be a tree model that fits a 

dependent variable to the covariates 𝑥. It can be written as a piecewise regression function, 

 

𝑇(𝑥, Θ) = ∑ 𝜔𝑙Ι(𝑅(𝑥) = 𝑅𝑙)𝐿
𝑙=1  ,    (C1) 

 

where Θ = {𝑅1, … , 𝑅𝐿 , 𝜔1, … , 𝜔𝐿}, are the tree parameters. The tree has 𝐿 terminal nodes with 𝑅𝑙 

the 𝑙th terminal node. Based on the value of its 𝑥 variables, each customer is classified into one of 

the 𝐿 terminal nodes, as indicated by the indicator function Ι(𝑅(𝑥) = 𝑅𝑙). A customer classified 

into the 𝑙th terminal node receives fitted value 𝜔𝑙 (in our case, a churn score). One can think about 

the classification of customers in terminal nodes as the repartition of customers in segments in 

latent-class analysis, except that a customer belongs to one segment exclusively.  
 

Trees are estimated using a greedy algorithm that finds at each step the split that maximizes 

the reduction in impurity (Breiman 1983). Having found the best split, the data are partitioned into 

the two resulting regions and the operation is repeated on each of the two regions. The number of 

terminal nodes is determined by first fitting a tree with a large number of nodes and subsequently 

pruning it. The splitting process stops when some minimum node size (i.e. number of observations 

per node) is reached (in our case, we fix the minimum node size to 10 observations per node, see 

Ripley 1996). Next, pruning is done by removing the least important nodes using a cost-complexity 

criterion described in Hastie et al. (2009, p. 308). This criterion is conceptually similar to the 

information criteria used for segmentation (e.g. BIC or AIC) and ensures a trade-off between the 

goodness of fit of the tree to the data and the tree size (i.e. model complexity), thus avoiding 

overfitting. We set a maximum of 8 terminal nodes for the pruned tree. Blattberg et al. (2008, pp. 

423-441) provide an extensive overview of classification and regression trees with an example. 
 

Web Appendix D. Estimation Details of the SGB Algorithm 

 

Let 𝑧𝑖 denote the dependent variable and 𝑥𝑖 a set of independent variables. A key feature of SGB 

is the way the fitted values 𝐹̂𝑏−1 obtained at iteration 𝑏 − 1 are combined with the tree fitted values 

𝑇(𝑥𝑖, Θ𝑏) obtained at iteration 𝑏. Given the process described above, the updated estimate of 

parameters Θ̂ is given by 
 

Θ̂ = argmin
Θ

∑ Ψ (𝑧𝑖, 𝐹̂𝑏−1(𝑥𝑖) + 𝑇(𝑥𝑖, Θ𝑏))𝑁
𝑖=1 .   (B1) 

 

The optimal combination can be found by computing the gradient of the loss function. The gradient 

is the partial derivative of the loss function w.r.t. 𝐹𝑏−1(𝑥𝑖), 

 
 

𝑔𝑟𝑎𝑑𝑖𝑏 = [
𝜕Ψ(𝑧𝑖,𝐹𝑏−1(𝑥𝑖))

𝜕𝐹𝑏−1(𝑥𝑖)
]

𝐹𝑏−1(𝑥𝑖)=𝐹̂𝑏−1(𝑥𝑖)
,    (B2) 
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where 𝑔𝑟𝑎𝑑𝑖𝑏 is the gradient for the 𝑖th customer at the 𝑏th iteration. Intuitively, a large gradient 

indicates a large difference in the loss between 𝐹̂𝑏(𝑥𝑖) and 𝐹̂𝑏−1(𝑥𝑖). Gradient descent optimization 

works by finding a local minimum of a differentiable (loss) function. As the negative gradient of 

a function points out to the direction of “the steepest descent” of this function, the optimization 

takes steps proportional to the negative of the gradient (i.e. first-derivative) of the function at the 

current point until no more improvement is found. Steepest descent chooses  ℎ𝑏 = −𝜌𝑏𝑔𝑟𝑎𝑑𝑏 with 

𝜌𝑏 called the “step distance.” It minimizes the loss function between the fitted values of iterations 

𝑏 and 𝑏 − 1. In simple terms, 𝜌̂𝑏 provides the optimal way to combine the fitted values from one 

iteration to the next, 

 
 

𝐹̂𝑏(𝑥𝑖) = 𝐹̂𝑏−1(𝑥𝑖) − 𝜌̂𝑏𝑔𝑟𝑎𝑑𝑏.     (B3) 

 

In order to diminish the risk of overfitting, Friedman (2002) proposes two modifications. First, 

randomization is added to the algorithm. At each iteration 𝑏 = 1, … , 𝐵, a randomly selected 

subsample (without replacement) of 𝑁′ customers is drawn from the calibration data with 𝑁′ ≤ 𝑁. 

Following Hastie et al. (2009), we choose 𝑁′ = 3000 customers, i.e. 30% of the original calibration 

sample. For both applications, we experimented with various sizes and found out that 30% was 

the best choice. This random subsample is used for estimation during this particular iteration. 

Second, Friedman (2002) proposes that the “model should not learn too quickly from the data.” 

Therefore, he suggests multiplying 𝜌̂𝑏 in equation (B3) by a learning parameter ν, with 0 < ν ≤ 1. 

Taken small enough, it ensures that the fitted values are slowly converging over the iterations. In 

our applications, we selected the learning rates that led to the best performance, i.e. .001 for the 

first application and .0005 for the second one. They prove to lead to the best holdout results for 

both the misclassification loss and for the profit-based loss functions. The algorithm runs over 𝐵 

iterations until it converges such that the difference between the loss at 𝑏 − 1 and the loss at 𝑏 is 

less than 1.0-6. For every decision made, we use the exact same settings for both loss functions to 

ensure a fair comparison. Table D1 summarizes the SGB estimation process (the R code is 

available upon request). 

 

Table D1: Pseudo-code of the SGB algorithm 

1. Initiatize 𝐹̂0(𝑥𝑖). 

2. For 𝒃 in 𝟏, … , 𝑩: 

a. For 𝑖 = 1, … , 𝑁, compute the negative gradient as  

−𝑔𝑟𝑎𝑑𝑖𝑏 = − [
𝜕Ψ(𝑧𝑖 , 𝐹𝑏−1(𝑥𝑖))

𝜕𝐹𝑏−1(𝑥𝑖)
]

𝐹𝑏−1(𝑥𝑖)=𝐹̂𝑏−1(𝑥𝑖)

. 

b. Take a random sample without replacement of 𝑁′ observations from the data, with 𝑁′ < 𝑁. 

c. Fit a regression tree with 𝐿 terminal regions 𝑅𝑏1, … , 𝑅𝑏𝐿 on the random sample with the 

negative gradient as dependent variable and all the customer covariates as independent 

variables. 

d. Compute the optimal terminal node predictions 𝜌𝑏1, … , 𝜌𝑏𝐿 

𝜌̂𝑏𝑙 = argmin
𝜌𝑏𝑙

∑ Ψ(𝑧𝑖, 𝐹̂𝑏−1(𝑥𝑖) + 𝜌𝑏𝑙)

𝑥𝑖∈𝑅𝑏𝑙

. 

e. Update 𝐹̂𝑏(𝑥𝑖) ← 𝐹̂𝑏−1(𝑥𝑖) + 𝜈𝜌̂𝑏𝑙(𝑥) with 𝑏𝑙(𝑥) the index of the terminal node into which an 

observation falls into at iteration 𝑏 given the values of its 𝑥, and 𝜈 is the learning rate parameter 

0 < 𝜈 ≤ 1. 
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Web Appendix E. Matching and Randomization Checks 

 

Study 1.  

 

We could not guarantee that the targeting was made at random. However, the data base was large 

enough and contained enough information on each customer that we were able to using matching 

in order to create matched samples that do not suffer from sampling selection bias. We use 

propensity score matching with nearest neighbor, as described in Ho, Imai, King, and Stuart 

(2007). Nearest neighbor matches a treated unit to a control unit that is closest in terms of a distance 

such as a logit. Propensity score matching greatly reduces the dependence of causal inferences on 

hard-to-justify, but commonly made, statistical modeling assumptions. The matched data provide 

inferences with substantially more robustness and less sensitivity to modeling assumptions. The 

approach was also used by Datta et al. (2015). The matched samples contain 2,595 customers in 

the treatment group and 2,595 customers in the control group. We performed randomization checks 

before and after matching in order to ensure that the treatment and control groups are comparable. 

We compare the distributions of the continuous variables in both samples using the Welch two 

sample t-test (H0: true difference in means is equal to zero) and using the asymptotic Pearson chi-

squared test (H0: independence) for the categorical variables. Table E1 confirms that while the 

samples were not random before matching (p<.05 for most variables), the distributions are not 

different from each other after matching (all p-values > .10). 

 

Table E1. Randomization Check Before and After Matching (Study 1)  
Before matching 

 
After matching  

Mean 

Control 

Group 

Mean 

Treatment 

Group 

p 
 

Mean 

Control 

Group 

Mean 

Treatment 

Group 

P 

Continuous variables 

Customer tenure (in 

months)22 

134.89 142.69 .00 
 

155.36 154.39 .72 

Customer age (in years)  46.59 47.04 .12 
 

47.30 47.16 .69 

Household size 3.08 3.11 .37 
 

3.09 3.14 .23 

Household income (in 

euros) 

24,230 24,306 .53 
 

24,512 24,503 .95 

Categorical variables        

Installation (DIY/Full)   .00    .73 

Language (A/B/C/D)   .00    .91 

Gender (M/F/U)   .01    1.00 

Sport package 1 (yes/no)   .00    .91 

Sport package 2 (yes/no) .50    1.00 

 

 

 

 
22 This variable measures the number of months that an individual is a customer of the company. It can be larger 

than 3 months when the customer had access to other services (e.g. Internet, phone) from the provider before 

subscribing to the interactive television subscription.  
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Study 2.  

In order to confirm that the randomization was done properly, we compared the distribution of 

individuals across the treatment and control groups, using the Welch two sample t-test (H0: true 

difference in means is equal to zero) for the continuous variable, and the asymptotic Pearson chi-

squared test (H0: independence) for the categorical variables. Customer tenure was first 

standardized for confidentiality reasons. The results available in Table E2 confirm that the 

randomization was made properly (all p-values > .10). 

Table E2. Randomization Check (Study 2)   
Mean Control Group Mean Treatment Group P 

Continuous variables 

Customer tenure (in years) 
 

.01 -.01 .57 

Categorical variables     

Attendance of any event (yes/no)    .56 

Online logging (yes/no)    .62 

Download activity (yes/no)    .20 

Special interest attendance (yes/no)    .52 

 

Web Appendix F. Empirical Comparison of the Classic and Profit-based Loss Function  

As simulations showed (Web Appendix B), the profit-based loss function works by minimizing 

the bias and maximizing efficiency toward observations that receive the highest weight, such that 

it provides more accurate predictions for the most valuable customers. To illustrate this, we first 

rank customers according to the scores estimated by SGB, using either the classic loss or the profit-

based loss function. For both customer rankings, we group customers per decile, D1 to D10 

(Ascarza 2018), and calculate for each experimental condition the average actual profit earned 

from a customer. Using Equation (8), we calculate the average actual profit of a customer in the 

treatment group for a given decile with 

 

𝜋𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 1

𝑁𝑡
∑  𝑖 ∈ Treatment (𝑚𝑖

(1)
 I(𝑦𝑖

(1)
=−1)−𝛿),   (F1) 

where 𝑁𝑡 is the number of treated customers in the decile. The average profit of a customer in the 

control group for a given decile is  

 

𝜋𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = 1

𝑁𝑐
∑  𝑚𝑗

(0)
 𝑗 ∈ Control I(𝑦𝑗

(0)
=−1).    (F2) 

 

Comparing 𝜋𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 with 𝜋𝐶𝑜𝑛𝑡𝑟𝑜𝑙 provides an estimate of the average treatment effect in a 

specific decile. In other words, it shows for which decile the intervention is the most beneficial. 

Figure F1 contains the results from both empirical applications.  
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Figure F1. Average profit per customer across experimental conditions for different group 

deciles, based on SGB scores, using classic or profit-based loss functions 

A. Classic Loss (Study 1)   B. Profit-based Loss (Study 1) 

 
C. Classic Loss (Study 2)   D.  Profit-based Loss (Study 2) 
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For Study 1, the classic loss function in Panel A reveals a different pattern than the profit-based 

loss function in Panel B. In Panel B, the intervention has the strongest impact (difference between 

treatment and control groups) in the top decile, which then slowly decreases across deciles. The 

treatment effect is positive for the first 60% of the ranking (D1–D6), reflecting how the profit-

based loss function ranks high profit lift customers higher than lower profit lift customers. In 

contrast, Panel A indicates a negative impact of the classic loss function for most deciles except 

D1 and D2. Therefore, the classic loss function missed out on many high profit lift customers who 

were assigned lower rankings or else intervened with low profit lift customers who were placed 

too high in the ranking. By focusing on the “wrong” criterion (accurately predicting churn), this 

function performs significantly worse than the profit-based loss function. The results for Study 2 

similarly confirm that the profit-based loss function (Panel D) establishes a larger treatment effect 

for the first decile than the classic loss function (Panel C). However, the differences are less 

pronounced, likely because the total impact of the campaign was small in the first place (see Figure 

2). However, for customers in the first decile, the profit-based loss function exerts a positive impact 

(average profit in the treatment group is larger than average profit in the control group), whereas 

the classic loss function has a negative impact for all deciles. Thus, the improved performance of 

the profit-based loss function emerges because it assigns higher rankings to high profit lift 

customers.  

 

Web Appendix G. Illustration of the Target Size Optimization Procedure 

Figure G1 illustrates the procedure described in Section 5.2. It shows the holdout profit curve at a 

random bootstrap iteration as a function of the target size, using both validation data (solid line) 

and the holdout test sample (dashed line). The optimal target size is the maximum reached on the 

validation sample (solid line). For this particular bootstrap sample, the method recommends a 

target size of 68% for Study 1 and 34% for Study 2 (vertical dashed line). To evaluate holdout 

performance, we calculate the campaign profit for this target size with the third test sample (dashed 

line). It corresponds to the intersection of the horizontal line with the vertical dashed line. The 

performance is slightly inferior (confirming that it is a true holdout evaluation) but close to the 

maximum performance attained if the optimal target size for the test sample were known.  
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Figure G1. Holdout campaign profit on the validation and test (holdout) sample and 

optimized target size for a random bootstrap iteration 

 

A. Study 1         B. Study 2 

 
Notes: The curves represent the holdout profits of the campaign for a random bootstrap iteration. The 

vertical dashed line represents the optimized target size and the horizontal line is the corresponding 

holdout campaign profit on the test sample. 
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