Analysis of Conjoint Data: Part II: Logit

Aurélie Lemmens

Logistic Regression

Dan McFadden developed a method of **logistic regression** to analyze choices people made about such things as transportation.

Daniel L. McFadden

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2000

Logistic Regression Allows us to Estimate Utilities and Choice Probabilities

Reminder: Random Utility Theory

- Respondents are asked to choose a stimulus in a choice set C composed of n stimuli (e.g. products)
- Every stimulus is characterized by a set of k attributes, $x_{i1} \dots x_{ik}$
- We observe $y_i = 1$ when stimulus *i* is chosen, $y_i = 0$ otherwise
- Thus, our data are y_i and $x_{i1} \dots x_{ik}$
- We want to estimate

The vector of preferences for each attribute β₁...β_k (part-worths)
U_i = β₁x_{i1} + β₂x_{i2} + ··· + β_kx_{ik} + ε_i
The probability of choosing stimulus *i* among the choice set C
P(i|C) = P(U_i ≥ U_j], for all j ∈ C

Mapping Utilities into Probabilities

• Our data

- Response variable: choice
- Explanatory variables: attributes of the hypothetical products
- The aim of our analysis
 - We don't observe utilities, just choices ⇒ our model should predict choices (choice probabilities), not utilities
- How do we transform utilities to choice probabilities?
 - Taking into account that the choice probabilities should be
 - Positive
 - Between 0 and 1
 - Sum to 1 across all alternatives in a choice set

Mapping Utilities into Probabilities

Multinomial Logit Model (MNL):

Assumes that the probability that an individual will choose one of the m alternatives i from the choice set C is:

$$p(i|C) = \frac{exp(U_i)}{\sum_{j=1}^{m} exp(U_j)} = \frac{exp(x_i\beta)}{\sum_{j=1}^{m} exp(x_j\beta)}$$

where

 U_i = the utility of alternative *i*,

 x_i = a vector of attribute level dummies for alternative *i*,

 β = a vector with unknown part-worth utilities [to be estimated]

• Golf ball example:

 $U_{i} = \beta_{1} \text{ HIGHFLY}_{i} + \beta_{2} \text{ MAGNUM}_{i} + \beta_{3} \text{ ECLIPSE}_{i} + \beta_{4} \text{ LONGSHOT}_{i} + \beta_{5} \text{ 5YARDS}_{i} + \beta_{6} \text{ I0YARDS}_{i} + \beta_{7} \text{ I5YARDS}_{i} + \beta_{8} \text{ PRICE}_{1}_{i} + \beta_{9} \text{ PRICE}_{2}_{i} + \beta_{10} \text{ PRICE}_{3}_{i} + \beta_{11} \text{ PRICE}_{4}_{i}$

-	LUCUELY.	2.1.4		D	FOLIDOF	D L D			EV A D D A		4004000	D 1 C	4514888	D
	HIGHFLY	Beta_1	MAGNUM	Beta_2	ECLIPSE	Beta_3	LONGSHOT	Beta_4	SYARDS	Beta_5	10YARDS	Beta_b	15YARDS	Beta_/
Stimulus 1: High														
Fly, 10 yards,					_								_	
\$10.99	1	0.54	0	0.36	0	-0.37	0	-0.53	0	-0.47	1	0.13	0	0.35
Stimulus 2:														
Magnum, 5 yards,														
\$8.99	0	0.54	1	0.36	0	-0.37	0	-0.53	1	-0.47	0	0.13	0	0.35
Stimulus 3:														
Eclipse+, 10 yards,														
\$6.99	0	0.54	0	0.36	1	-0.37	0	-0.53	0	-0.47	1	0.13	0	0.35
Stimulus 4: Long														
Shot, 15 yards,														
\$4.99	0	0.54	0	0.36	0	-0.37	1	-0.53	0	-0.47	0	0.13	1	0.35
Stimulus 5: High														
Fly, 15 yards,														
\$10.99	1	0.54	0	0.36	0	-0.37	0	-0.53	0	-0.47	0	0.13	1	0.35
-	DDICE 1	Data 0	DDICE 2	Data 0	DDICE 2	Data 10		Data 11				TV		
	PRICE_1	Beta_8	PRICE_2	Beta_9	PRICE_3	Beta_10	PRICE_4	Beta_11	UTILITY	2XP(U) 1	ROBABILI	IY		
Stimulus 1: High														
Fly, 10 yards,		0.00		0.17		0.00		0.74	0.07	0.00		4.7		
\$10.99	0	0.66	0	0.17	U	-0.09	1	-0.74	-0.07	0.93	0.	1/		
Stimulus 2:														
Magnum, 5 yards,	_													
<i>\$8.99</i>	0	0.66	0	0.17	1	-0.09	0	-0.74	-0.2	0.82	0.	15		
Stimulus 3:														
Eclipse+, 10 yards,														
\$6.99	0	0.66	5 1	0.17	0	-0.09	0	-0.74	-0.07	0.93	0.	17		
Stimulus 4: Long														
Shot, 15 yards,														
\$4.99	1	0.66	0	0.17	0	-0.09	0	-0.74	0.48	1.62	0.	30		
Stimulus 5: High														
Fly, 15 yards,														
\$10.99	0	0.66	0	0.17	0	-0.09	1	-0.74	0.15	1.16	0.	21		
									total	E 46	1	00		
									total:	5.40	1.	00		

Multinomial Logit Model (MNL):

Assumes that the probability that an individual will choose one of the m alternatives i from the choice set C is:

$$p(i|C) = \frac{exp(U_i)}{\sum_{j=1}^{m} exp(U_j)} = \frac{exp(x_i\beta)}{\sum_{j=1}^{m} exp(x_j\beta)}$$

where

 U_i = the utility of alternative *i*,

 x_i = a vector of attribute level dummies for alternative *i*,

 β = a vector with unknown part-worth utilities [to be estimated]

Estimation

Seek partworths (beta's) such that the predicted probabilities of chosen alternatives are maximized

Golf Ball Data - Estimation

- Logit model in Sawtooth
- Estimation output
 - I. Summary of model fit
 - II. Part-worth estimates and t-statistics
 - III. Attribute importances

Summary of Model Fit

ome									
Add	Duplicate	Analysis Logit	Types		Ţ	🕹 Utility Report 🕑	Export Util	lities 🌞	
	ANALYSIS RUNS		RUN SE	TTINGS		REPOR	TING		
	nalysis run 1 X								
				<u>_</u>	5		-	<u> </u>	
2	A	10 C	B	C	D	E	F	G	
3		Iteration	Chi-Square	KLH					
4		1	1106.00405	0.29207					
5		2	1196.33425	0.29323					
5		3	1196.41919	0.29324					
0 +0	C	4	1136.41313	0.29324					
0	converged alter 0.15 seconds.								
10	on likelihood for this model	— Г	4600 20426		Mo	asure of mode	fit hi	ghory	values (less pegative) bett
11 1	og-likelihood for trils model	L	5100 C0205		TIC	asure or mode	, IIC, III	Silei	values (less llegative) bette
12 0	ifference		-0100.00000 E00 000E0						
12 0	incrence		550.20555						
14 P	ercent Certainty		11 50712						
15 A	kaike Info Criterion		9218 78852						
16 0	onsistent Akaike Info Criterion		9283 85412						
17 B	avesian Information Criterion		9274 85412						
	diusted Bavesian Info Criterion		92/6 256/2						
18 A	ajaaraa bayoonan niio ontonon				M	duna of model	City lation	h a la v la	- L
18 A	bi-Square		1196 41919		Irlea	sure of model	tit. nig	ner va	alues detter

Part-worths: Estimates & T-stats

Variable	Effect	Std Error	t Ratio	
High-Flyer Pro, by Smith and Forester	0.54407	0.03526	15.42997	
Magnum Force, by Durango	0.36260	0.03523	10.29098	
Eclipse+, by Golfers, Inc.	-0.37368	0.04088	-9.14155	
Long Shot, by Performance Plus	-0.53299	0.04274	-12.46984	
Drives 5 yards farther than the average ball	-0.47256	0.03278	-14.41561	
Drives 10 yards farther than the average ball	0.12703	0.02914	4.35978	
Drives 15 yards farther than the average ball	0.34553	0.02845	12.14726	
\$4.99 for package of 3 balls	0.65849	0.03540	18.59904	
\$6.99 for package of 3 balls	0.17237	0.03668	4.69901	
\$8.99 for package of 3 balls	-0.09275	0.03867	-2.39866	
\$10.99 for package of 3 balls	-0.73811	0.04475	-16.49244	
NONE	0.00751	0.04141	0.18131	

• 95% significance when |t|>1.96

All but "NONE" significant

Part-worths: Interpretation

Variable	Effect	Std Error	t Ratio	
High-Flyer Pro, by Smith and Forester	0.54407	0.03526	15.42997	
Magnum Force, by Durango	0.36260	0.03523	10.29098	
Eclipse+, by Golfers, Inc.	-0.37368	0.04088	-9.14155	
Long Shot, by Performance Plus	-0.53299	0.04274	-12.46984	
Drives 5 yards farther than the average ball	-0.47256	0.03278	-14.41561	
Drives 10 yards farther than the average ball	0.12703	0.02914	4.35978	
Drives 15 yards farther than the average ball	0.34553	0.02845	12.14726	
\$4.99 for package of 3 balls	0.65849	0.03540	18.59904	
\$6.99 for package of 3 balls	0.17237	0.03668	4.69901	
\$8.99 for package of 3 balls	-0.09275	0.03867	-2.39866	
\$10.99 for package of 3 balls	-0.73811	0.04475	-16.49244	
NONE	0.00751	0.04141	0.18131	

<u>Effects coding</u>: the last level is dropped and is estimated as minus the sum of all other levels of that attribute

<u>(Dummy coding</u>: the last level is dropped and constrained to zero.)

Effect Coding vs Dummy Coding

- Suppose the attribute brand with 4 levels: High-Flyer, Magnum, Eclipse, Long Shot
- One level is always considered as <u>reference level</u>. The parameter for this level is held constant.
 - <u>Example</u>: Long Shot is our reference level.
- > We estimate the parameters for the other levels.
 - <u>Example</u>: we create 3 dummy variables for the attribute brand and estimate one parameter for each dummy.
- <u>Effect coding</u>: the dummy variables take value I for the reference level (see next slide)
- Dummy coding: the dummy variables take value 0 for the reference level

Effect Coding

		Dummy I		Dummy 2		Dummy 3	
f stimulus is :	Highfly	I.		0		0	
	Magnum	0		I		0	
	Eclipse	0		0		l I	
	Longshot	-1		-1		-1	
	$U_i = \beta_1$	HIGHFLY _i	+ β_2	MAGNUM _i	+ β ₃	ECLIPSE _i +	eta_4 LON

 \rightarrow we estimate β_1 , β_2 and β_3

Variable	Effect \$
High-Flyer Pro, by Smith and Forester	0.54407
Magnum Force, by Durango	0.36260
Eclipse+, by Golfers, Inc.	-0.37368
Long Shot, by Performance Plus	-0.53299

 $\beta_4 = -.54407 - .36260 - (-.37368) = -.53299$

Part-worths: Interpretation

D

Variable	Effect	Std Error	t Ratio	
High-Flyer Pro, by Smith and Forester	0.54407	0.03526	15.42997	Most preferred brand
Magnum Force, by Durango	0.36260	0.03523	10.29098	
Eclipse+, by Golfers, Inc.	-0.37368	0.04088	-9.14155	
Long Shot, by Performance Plus	-0.53299	0.04274	-12.46984	Least preferred branc
Drives 5 yards farther than the average ball	-0.47256	0.03278	-14.41561	
Drives 10 yards farther than the average ball	0.12703	0.02914	4.35978	
Drives 15 yards farther than the average ball	0.34553	0.02845	12.14726	
\$4.99 for package of 3 balls	0.65849	0.03540	18.59904	
\$6.99 for package of 3 balls	0.17237	0.03668	4.69901	
\$8.99 for package of 3 balls	-0.09275	0.03867	-2.39866	
\$10.99 for package of 3 balls	-0.73811	0.04475	-16.49244	
NONE	0.00751	0.04141	0.18131	

Interpreting Trade-Offs between Attributes

Variable	Effect	
High-Flyer Pro, by Smith and Forester	0.54407	
Magnum Force, by Durango	0.36260	Trada off borform and we bridg?
Eclipse+, by Golfers, Inc.	-0.37368	Irade-off performance vs price?
Long Shot, by Performance Plus	-0.53299	
Drives 5 yards farther than the average ball	-0.47256	Utility gain from driving 10 instead of 5 yards
Drives 10 yards farther than the average ball	0.12703	= 0.12697 0.47255 = 0.59952
Drives 15 yards farther than the average ball	0.34553	
\$4.99 for package of 3 balls	0.65849	Utility loss from paying \$6.99 instead of \$4.99
\$6.99 for package of 3 balls	0.17237	= 0.17234 - 0.65858 = -0.48624
\$8.99 for package of 3 balls	-0.09275	
\$10.99 for package of 3 balls	-0.73811	
NONE	0.00751	

Consumers would be willing to pay \$6.99 instead of \$4.99 when they can drive 10 yrds farther instead of 5

Interpreting Trade-Offs between Attributes

Variable	Effect
High-Flyer Pro, by Smith and Forester	0.54407
Magnum Force, by Durango	0.36260
Eclipse+, by Golfers, Inc.	-0.37368
Long Shot, by Performance Plus	-0.53299
Drives 5 yards farther than the average ball	-0.47256
Drives 10 yards farther than the average ball	0.12703
Drives 15 yards farther than the average ball	0.34553
\$4.99 for package of 3 balls	0.65849
\$6.99 for package of 3 balls	0.17237
\$8.99 for package of 3 balls	-0.09275
\$10.99 for package of 3 balls	-0.73811
NONE	0.00751

Trade-off brand vs price?

How much extra \$ would people give for Eclipse + compared to Long Shot?

The difference in utility is about .16.

Such a difference would be compensated by a price increase of ???

Depending on the price range, a \$2 increase costs at least .25 in utility, meaning that a change in brand name should not be associated with more than \$1 price increase.

Adding the No-Choice Option

We add a new dummy variable (called "NONE" in Sawtooth)

		Dummy I	Dummy 2	Dummy 3	Dummy 4
lf stimulus is : –	Highfly	I	0	0	0
	Magnum	0	I	0	0
	Eclipse	0	0	I.	0
	Longshot	- 1	- 1	-1	0
	None	0	0	0	I
	<i>U_i</i> =		••	+ β ₅	NONE _i

No-Choice: Interpretation

Variable	Effect
High-Flyer Pro, by Smith and Forester	0.54407
Magnum Force, by Durango	0.36260
Eclipse+, by Golfers, Inc.	-0.37368
Long Shot, by Performance Plus	-0.53299
Drives 5 yards farther than the average ball	-0.47256
Drives 10 yards farther than the average ball	0.12703
Drives 15 yards farther than the average ball	0.34553
\$4.99 for package of 3 balls	0.65849
\$6.99 for package of 3 balls	0.17237
\$8.99 for package of 3 balls	-0.09275
\$10.99 for package of 3 balls	-0.73811
NONE	0.00751

How do we interpret the no-choice partworth?

.00751 is the threshold utility for buying. That is below this utility, customers would prefer not to buy.

Let's take an example: what should be the price and performance level of a Long Shot ball to convince customers to buy (rather than not buying at all)?

Utility	Long Shot	=53299
Utility	None	= .0075 I

Difference = -.52548

The difference can be overcome with e.g. a price of \$4.99 and a 10 yards performance (.65849+.12703)

Attribute Importances

- Suppose Range_m indicates the range in absolute value of partworths for attribute m (=1,...,K)
- Then

Variable Effect Importance High-Flyer Pro, by Smith and Forester 0.54407 Magnum Force, by Durango 0.36260 $Range_1 = 0.54 - 0.53 = 1.08$ = 1.08/(1.08+0.82+1.40) = 32.72%-0.37368 Eclipse+, by Golfers, Inc. Long Shot, by Performance Plus -0.53299 Drives 5 yards farther than the average ball -0.47256 $Range_2 = 0.34 - 0.47 = 0.82$ = 0.82/(1.08+0.82+1.40) = 24.85%Drives 10 yards farther than the average ball 0.12703 Drives 15 yards farther than the average ball 0.34553 \$4.99 for package of 3 balls 0.65849 \$6.99 for package of 3 balls 0.17237 $Range_3 = 0.66 - 0.74 = 1.40$ = 1.40/(1.08+0.82+1.40) = 42.43%\$8.99 for package of 3 balls -0.09275 \$10.99 for package of 3 balls -0.73811Attribute Importances Brand: 32.72267 NONE 0.00751 Performance: 24.85227

Price:

Importance of attribute $m = |Range_m|/(|Range_1|+|Range_2|+...+|Range_K|)$

42.42505

Transforming Utilities in Probabilities

Suppose two alternative stimuli offered to consumers

Stimuli I		Stimuli 2	
High-Flyer Pro Drives 10 yards \$6.99 for 3 balls	.54 .13 .17	Eclipse + Drives 15 yards \$6.99 for 3 balls	37 .35 .17
Total Utility _I	.84	Total Utility ₂	.15
Exp(Utility ₁)	2.32	Exp(Utility ₂)	1.16
	Exp(Utility ₁)+ Exp(Utility	$ty_2) = 3.48$	
Probability ₁	2.32/3.47 = 66.8%	Probability ₂	1.16/3.48 = 33.2%