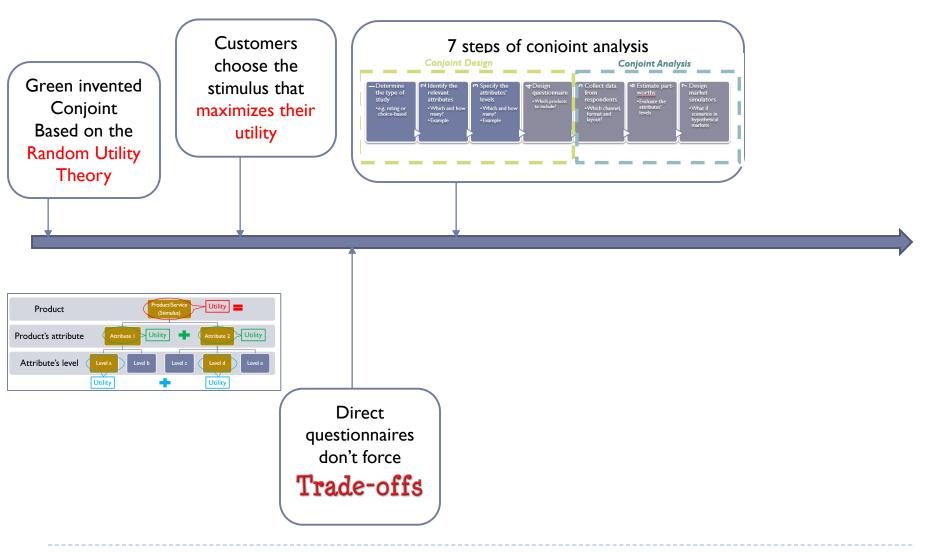
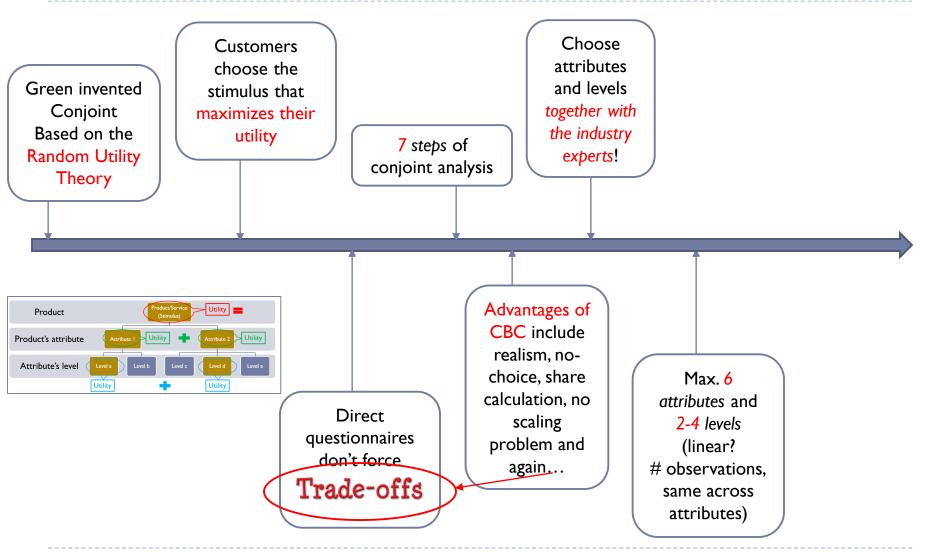

# Session 3: Conjoint Design (Part 2)

Fall 2018


A. Lemmens

### What Have We Learned so Far?


## What Have We Learned Last Time?



# What Have We Learned Last Time?



# What Have We Learned Last Time?



# Key Aspects for a Good Design

### STEP I. How many stimuli to include?

- How many choice sets?
- How many stimuli per choice sets?
- STEP 2. Which stimuli to include?
  - Level balance
  - Orthogonality

STEP 3. How to combine them in choice sets?

- Level overlap
- Utility balance

### How Many Stimuli to Include?

STEP I IN BUILDING YOUR CONJOINT DESIGN

# How Many Stimuli to Include?

- How many possible combinations of attributes' levels does our design contain?
  - It depends on the number of attributes we selected
  - As well as on the number of levels of these attributes

### # combinations = $2^k \times 3^l \times 4^m \times 5^n \times ...$

With:

- k = number of attributes with 2 levels
- I = number of attributes with 3 levels
- m = number of attributes with 4 levels
- n = number of attributes with 5 levels (try to avoid !)

# How Many Stimuli to Include?

- Whether we can include all possible stimuli in the questionnaire <u>depends on:</u>
  - Length of the questionnaire (i.e. number of choice sets)
  - Number of alternatives per choice set
- If we include all combinations
  - Full factorial design
  - ▶ E.g. 3 attributes, each with 2 levels → 8 stimuli
- ▶ <u>If we only include a fraction of them</u>
  - Fractional factorial design
  - ► E.g. 7 attributes, each with 2 levels → I 28 stimuli but we include 24 only

## Full Factorial Design: 2 x 2 x 2 levels



color

## Fractional Factorial Design



color

# Length of the Questionnaire

### Advantages of large questionnaire:

- More observations per respondent (more reliable estimates)
- Increase in quality, as respondents learn how to answer
- Disadvantage of large questionnaire:
  - > Decrease in quality, as respondents get fatigued or bored
- <u>Rule of thumb</u>: no more than 20 choice sets, 12 will often do (Johnson and Orme, 1996)
- <u>Depends on number of parameters to be estimated</u> (more levels means more parameters hence more data needed)

### How Many Alternatives per Choice Set?



## How Many Alternatives per Choice Set?

- Usually 2 to 4 alternatives per choice set
- The more alternatives, the more information the respondents have to process
  - E.g. 3 stimuli (in one choice set) characterized by 4 attributes each
    - = 12 bits of information to process
  - E.g. 2 stimuli (in one choice set) characterized by 6 attributes each
    - = 12 bits of information

 $\rightarrow$  The larger the number of attributes, the lower the number of alternatives a respondent can handle.

- Do not exceed 18-20 bits of information
  - E.g. 3 alternatives with 6 attributes

## How Many Alternatives per Choice Set?





How many bits of information does this choice set contain?

STEP 2 IN BUILDING YOUR CONJOINT DESIGN

### And now?

- We have now decided how many choice sets we want and how many alternatives per choice set.
- > Therefore, we know how many stimuli we need to select.
- But... how do we decide which ones to select?



#### color



color

- Many possible designs
  - E.g. the number of ways to select 20 stimuli out of 128 is  $1.2 \times 10^{23}$
- Optimal design?
  - Provides as much info as possible about respondent's preferences for given number of tasks
  - Minimizes standard errors of part-worth estimates

### $\rightarrow$ optimality criteria for a good design

# Optimality Criteria for Design

- Conditions for good choice design (Huber & Zwerina 1996)
- Level balance
  Which stimuli to include?
  Levels of an attribute occur with equal frequency
  Orthogonality
  Levels of any two attributes occur independently

- Level balance:
  - Levels of an attribute occur with equal frequency



• Level balance:

• Levels of an attribute occur with equal frequency



#### <u>Example: Smart Phone</u>

- Attribute I: color
  - Level I: white
  - Level 2: black
- Attribute 2: Memory
  - Level 1:32-bit
  - Level 2:64-bit

#### First questionnaire/design: Number of occurrences of each level

|       | white | black | TOTAL |
|-------|-------|-------|-------|
| 32-ь  | 6     | 3     | 9     |
| 64-b  | 3     | 6     | 9     |
| TOTAL | 9     | 9     | 18    |

#### Balanced?

Third questionnaire/design: Number of occurrences of each level

|           | white | black | TOTAL |
|-----------|-------|-------|-------|
| 32-b      | 5     | 5     | 10    |
| 64-b      | 5     | 5     | 10    |
| TOTAL     | 10    | 10    | 20    |
| Balanced? |       |       |       |

#### Second questionnaire/design: Number of occurrences of each level

|       | white | black | TOTAL |
|-------|-------|-------|-------|
| 32-ь  | 8     | 4     | 12    |
| 64-b  | 4     | 2     | 6     |
| TOTAL | 12    | 6     | 18    |
|       |       |       |       |

- Level balance:
  - Levels of an attribute occur with equal frequency
- Orthogonality:
  - Levels of any two attributes occur independently
  - Rate of occurrence for any combination of levels = rate of occurrence of first level x rate of occurrence of second level
  - Quick check: rows (and columns) are proportional to each other

#### <u>Example: Smart Phone</u>

- Attribute I: color
  - Level I: white
  - Level 2: black
- Attribute 2: Memory
  - Level 1:32-bit
  - Level 2:64-bit

#### Second questionnaire/design: Number of occurrences of each level

|             | white | black | TOTAL |
|-------------|-------|-------|-------|
| 32-ь        | 8     | 4     | 12    |
| 64-b        | 4     | 2     | 6     |
| TOTAL       | 12    | 6     | 18    |
| Orthogonal? |       |       |       |

#### First questionnaire/design: Number of occurrences of each level

|       | white | black | TOTAL |
|-------|-------|-------|-------|
| 32-ь  | 6     | 3     | 9     |
| 64-b  | 3     | 6     | 9     |
| TOTAL | 9     | 9     | 18    |

#### Orthogonal?

Third questionnaire/design: Number of occurrences of each level

|       | white | black | TOTAL |
|-------|-------|-------|-------|
| 32-b  | 5     | 5     | 10    |
| 64-b  | 5     | 5     | 10    |
| TOTAL | 10    | 10    | 20    |

Orthogonal?

- Not possible to achieve level balance and orthogonality for all numbers of stimuli
  - Example above: not possible for 18 stimuli
- Necessary condition:
  - I. Number of stimuli should be divisible by the number of levels for any attribute (example above: 2)
  - 2. Number of stimuli should be divisible by the product of the number of levels for any pair of attributes (example above: 2 x 2 = 4)

#### • Example: 2 Attributes with 2 levels and 1 attribute with 3 levels:

multiple of

- 2 and 3
- $2 \times 2 = 4$
- $2 \times 3 = 6$

e.g. 24 stimuli would allow to satisfy both balance and orthogonality

→ We can go for e.g. 12 choice sets of 2 stimuli each, 8 choice sets of 3 stimuli, ...

What to do if balanced and orthogonal design cannot be found?
 (e.g. large number of stimuli needed, exclusion of unrealistic stimuli)

- Ultimate objective is to obtain small standard errors → minimize D-error measure (≈ average variance) ⇔ maximize D-efficiency
- Level balance and orthogonality are tools to achieve this  $\rightarrow$  tradeoff
- Design with neither balance nor orthogonality may have higher D- efficiency than design with exactly one of these two properties!

## How to Combine Stimuli in Choice Sets?

STEP 3 IN BUILDING YOUR CONJOINT DESIGN

# Optimality Criteria for Design

- Conditions for good choice design (Huber & Zwerina 1996)
- Level balance Which stimuli to include? Levels of an attribute occur with equal frequency <u>Orthogonality</u> Levels of any two attributes occur independently Minimal level overlap Alternatives within choice set do not share same attribute levels <u>Utility balance</u> Difficult choices, i.e., (almost) equally attractive alternatives How to combine stimuli in choice sets?

### Stimulus I

- ▶ 5 x zoom
- I0 megapixels
- 3 inches

### Stimulus 2

- 3 x zoom
- 6 megapixels
- 2 inches




Level Overlap for this choice set ?

### Stimulus I

- ▶ 5 x zoom
- I0 megapixels
- 3 inches

### Stimulus 2

- 3 x zoom
- I0 megapixels
- 2 inches




Level Overlap for this choice set ?

### Stimulus I

- ▶ 5 x zoom
- I0 megapixels
- 3 inches

### Stimulus 2

- 3 x zoom
- I0 megapixels
- 3 inches



Level Overlap for this choice set ?

- Different from no level overlap
- Level overlap will always occur if the choice sets contain more stimuli than levels exist per attribute
- Some level overlap is often recommended
  - It allows the estimation of interaction effects (e.g. brand and price)



### Utility Balance?



# Malibu Dream Airstream





Stunning All Bamboo House on Pristine Valley edge



### Utility Balance?



Hotel Chez Maman in South Senegal House with private swimming pool in South Spain

# Utility Balance?

#### Stimulus I

- ▶ 5 x zoom
- I0 megapixels
- 3 inches

#### Stimulus 2

- 3 x zoom
- 6 megapixels
- 2 inches

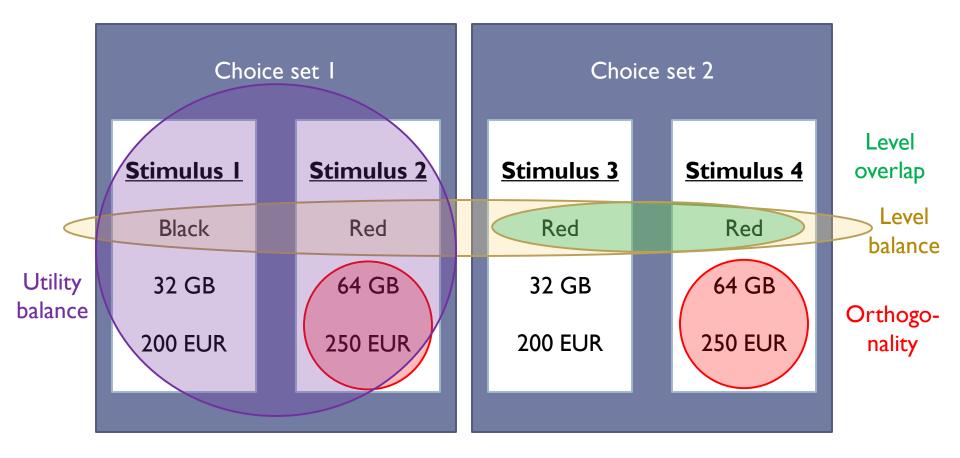


# Utility Balance?

#### Stimulus 3

- ▶ 5 x zoom
- 6 megapixels
- 3 inches

#### Stimulus 4

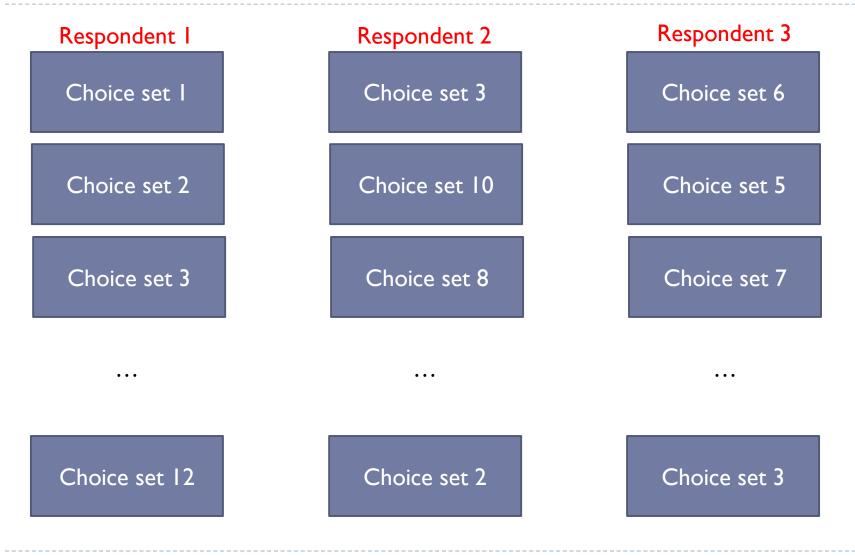

- 3 x zoom
- I0 megapixels
- 2 inches



## Utility Balance

- In general, utility balance is a very difficult criterion to satisfy
- ▶ <u>Why</u>?
  - To define difficult tradeoffs, we would need to know in advance how respondents will evaluate the different attribute levels
  - But this required input is actually what we want to learn
  - → A classical chicken-egg problem
  - → Sawtooth does not consider this criterion, but instead...

#### Summary of the Four Criteria



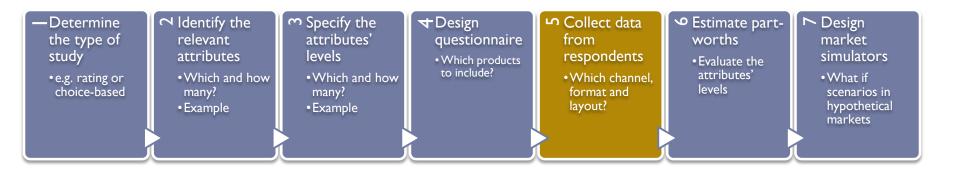

A bad design!!!

## Randomized Designs

- Sawtooth adds an extra element of complexity and offers to randomize the choice sets (tasks) that a respondent will receive
- Each respondent receives a unique questionnaire

## Randomized Designs

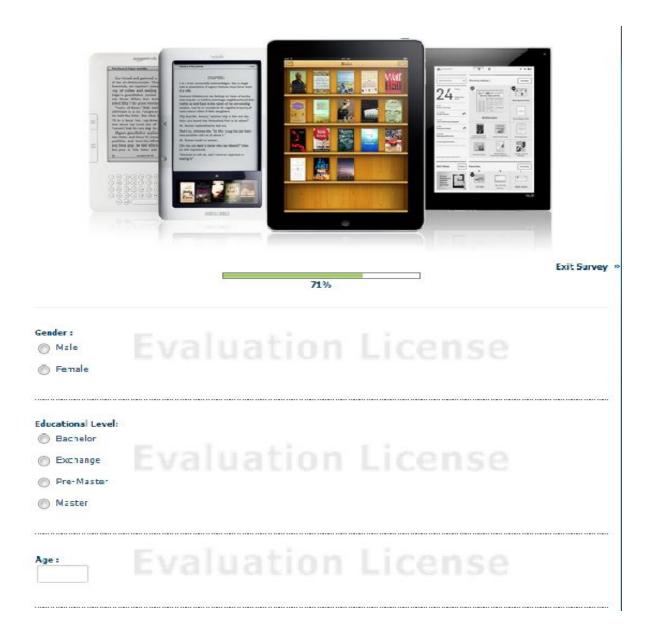


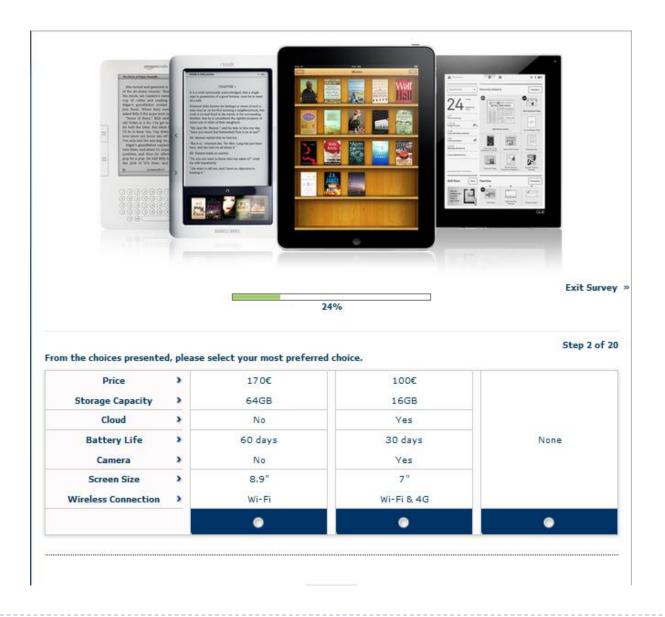

## Randomized Designs

- Randomization reduces design efficiency (by 5 to 10%) but ...
- It reduces the impact of order effects and other context effects.
- It allows to explore main and interaction effects by allowing for some level overlap
- Select "Balanced overlap" (some level overlap is tolerated)
- Always add fixed holdout choice sets (tasks)

# Adding a No-Choice Option

- Potential to include a "no-choice alternative"
  - None of the alternatives is good enough
  - I prefer my current product
  - ⇒ Allows breakdown primary vs. secondary demand
  - ⇒ Enhances ability to do market simulations


#### Step 5: Collect Data from Respondents




#### See example in Sawtooth:

http://www.sawtoothsoftware.com/surveys/baseball/cgibin/ciwweb.pl?hid\_studyname=baseball&hid\_pagenum=0









Exit Survey »

96%

Step 20 of 20

From the choices presented, please select your most preferred choice.

|                     |   | 0       |            | •    |
|---------------------|---|---------|------------|------|
| Vireless Connection | > | Wi-Fi   | Wi-Fi & 4G |      |
| Screen Size         | > | 7"      | 7"         | None |
| Camera              | > | No      | No         |      |
| Battery Life        | > | 30 days | 30 days    |      |
| Cloud               | > | No      | No         |      |
| Storage Capacity    | > | 16GB    | 16GB       |      |
| Price               | > | 280€    | 100€       |      |

Session 3

## Number of Respondents

- Choice-based conjoint requires *multiple* respondents:
  - No guarantees, only guidelines
  - In practice, range from 150 to 1200 respondents (Orme 1998)
  - Minimum of 200 respondents per group/segment (Orme 1998)
  - Own experience: good results with 100 respondents, or multiple if you want to consider segments

#### Next Sessions: How to Analyze the CBC Data?