Analysis of Conjoint Data: Part III: Latent Class Analysis

Aurélie Lemmens

Preference Heterogeneity

• Reminder:

The probability that an individual will choose i from the choice set C composed of n stimuli:

Latent Class Model

Multinomial Logit Model (MNL):

We now assume that this probability will depend on the segment s this individual belongs to:

$$p_{\mathbf{s}}(i|C) = \frac{exp(U_{i\mathbf{s}})}{\sum_{j=1}^{m} exp(U_{j\mathbf{s}})} = \frac{exp(x_i\beta_{\mathbf{s}})}{\sum_{j=1}^{m} exp(x_j\beta_{\mathbf{s}})}$$

Example of a market with 2 segments:

• Low-price segment

 \rightarrow Highly negative part-worth for price

High-quality segment:

 \rightarrow Highly positive part-worth for quality

Latent Class Model

In contrast to clustering (e.g. k-means), we are not 100% sure what segment an individual belongs to

 $p_{(s=1)}$ = Probability that individual is in segment 1 $p_{(s=2)}$ = Probability that individual is in segment 2

 $p_{(s=S)}$ = Probability that individual is in segment S

. . .

Latent Class Model

• Therefore, the probability that an individual will choose *i* in choice set C

Intuition:

Take the weighted average probability of choosing *i* across all segments, with the weights given by the probability of the individual to belong to that segment

- Segments:
 - Segment I: Low-price segment
 - Segment 2: High-quality segment
- Respondents:
 - Respondent I: $p_{(s=1)} = 0.80, \quad p_{(s=2)} = 0.20$
 - Respondent 2: $p_{(s=1)} = 0.60, \quad p_{(s=2)} = 0.40$
 - Respondent 3: $p_{(s=1)} = 0.50$, $p_{(s=2)} = 0.50$

Interpretation:

- Respondents I and 2 probably belong to low-price segment but evidence is stronger for respondent I than for respondent 2
- For respondent 3, there is as much evidence she belongs to any segment

Example (continued)

• Suppose a choice set C with 3 products:

			Probability	of choosin	g product i
Segment s	Proba to belong to	Segment s	i = 1	i = 2	i = 3
l	0.7	I	0.6	0.3	0.1
2	0.3	2	0.3	0.2	0.5
	p_2				$p_2(3 C)$

Т

⇒ Probability of choosing alternative 3 from the set C = p(3|C)

 $= p_{(s=1)} \times p_1(3|C) + p_{(s=2)} \times p_2(3|C)$

= $0.7 \times 0.1 + 0.3 \times 0.5$

Segmentation Principles

- Which refinement level to consider? Segmentation level
 - Macro: country segments (e.g. Europe vs. Asia)
 - Micro: consumer segments (e.g. young vs. old; price-sensitive vs. quality-seeking)
- Which distance(s) to consider? Segment basis
 - <u>General basis</u>: independent of the domain, (i) <u>observable</u>: geographic regions (Middle East, Oceania), socio-demographic variables (population size, age, education, language), ... or (ii) <u>unobservable</u>: cultural dimensions (Hofstede, Schwartz values), life styles (VALS value-attitude-lifestyle).
 - Domain-specific basis: type of usage (heavy vs. light), financial product ownership, brand loyalty
- Which method to use to find the segment? Segmentation method

Criteria for a Good Segmentation

- Six factors determining the effectiveness of market segmentation:
 - 1. <u>Identifiability</u>: easily measured segmentation bases
 - 2. <u>Substantiality</u>: segments should be large enough to be profitable
 - <u>Accessibility</u>: effective promotional/distributional tools to reach segment(s)
 - 4. <u>Stability</u>: composition of segments should not change rapidly
 - 5. <u>Responsiveness</u>: homogeneous, unique response within segment
 - 6. <u>Actionability</u>: segments and firm's goals/competencies should match

• CBC data

- Add profiling variables (next slide)
- 2. Check segment sizes, use IC criteria (see later slides)
- 3. Add channel check; add price (or promotion) attribute
- 4. Stable preferences for attributes
- 5. Select attributes' levels according to a segment's preferences
- 6. Focus on segments with preferred levels in line with firm's strategy

Segmentation Methods

Clustering methods

- E.g. k-means
- Can be used with CBC data but in two steps:
 - Step I: estimate the part-worths per customer
 - Step 2: apply k-means on these part-worths (rows: customers, columns: part-worths)
- Latent-Class analysis
 - Does it in one step!

Profiling Segments

- Connecting preferences to observed socio-demographics
- We can predict preferences for any (new) customer, even those who have not filled in the CBC as soon as we know her socio-demographics

Increase the identifiability of the segments!

Prior and Posterior Probabilities

Two types of segment membership probabilities:

- Prior probability:
 - Probability of segment membership before observing individual data
 - Prior probability = proportion of individuals in a segment (segment size)
 Not specific for individuals
- Posterior probability:
 - Probability of segment membership after observing individual data
 - Respondent's choices from choice sets represent useful segment info Individual specific

Prior and Posterior Probabilities

Example: 2 segments, 2 alternative stimuli, one choice is observed

Assume two equal-sized segments:

- Pr(low-price segment) = 0.50,
- Pr(high-quality segment) = 0.50

Prior probabilities

• We observe:

- Suppose one choice set with 2 products
 - Product A: low-price product
 - Product B: high-quality product
- 80% of customers belonging to the low-price segment choose A
- 30% of customers belonging to the high-quality segment choose A

Likelihood(A|low-price) = 0.80 \rightarrow Likelihood (B|low-price) = 0.20 Likelihood(A|high-quality) = 0.30 \rightarrow Likelihood (B|high-quality) = 0.70

- \rightarrow these are called <u>likelihood</u> of choice per segment: Likelihood(product *i*|segment s)
- We want <u>posterior</u> segment <u>probabilities</u>: Pr(segment s|product i)

	А	В	
price-sens (50)	80%	20%	100%
quality-sens (50)	30%	70%	100%

	А	В	
price-sens	$50 \times 0.80 = 40$	50×0.20 = 10	50
quality-sens	$50 \times 0.30 = 15$	$50 \times 0.70 = 35$	50
	55	45	100

50×0.80 = 40	$50 \times 0.20 = 10$	50
$50 \times 0.30 = 15$	$50 \times 0.70 = 35$	50
55	45	100
	A	В
$100\% \times \frac{15}{55} = 2$	7% 100% × 2	$\frac{10}{45} = 22\%$ $\frac{35}{45} = 78\%$ 100%
	$50 \times 0.30 = 15$ 55 $100\% \times \frac{40}{55} = 7$ $100\% \times \frac{15}{55} = 2$	$50 \times 0.30 = 15 50 \times 0.70 = 35$ $55 45$ A $100\% \times \frac{40}{55} = 73\% 100\% \times \frac{40}{55}$

- Hence, after observing respondent's choice:
 - If alternative A is chosen, posteriors become
 - Pr(low-price segment) is updated from 50% to 73%
 - Pr(high-quality segment) is updated from 50% to 27%

- If alternative B is chosen, posteriors become
 - Pr(low-price segment) is updated from 50% to 22%
 - Pr(high-quality segment) is updated from 50% to 78%

Example: Summary

		ŀ	4	В		
price-se	ns	$50 \times 0.80 = 4$	0 50	$\times 0.20 = 10$	50	
quality-	sens	$50 \times 0.30 = 1$.5 50	$\times 0.70 = 35$	50	
		5	5	45	100	
			А			В
price-sens	0.50×	0.50×0.80 0.80+0.50×0.30	= 0.73	0.50×0.2 0.50×0.20+0.5	$\frac{0}{00 \times 0.70} =$	0.22
quality-sens	0.50×	0.50×0.30 0.80+0.50×0.30	= 0.27	0.50×0.7 0.50×0.20+0.5	$\frac{0}{00 \times 0.70} =$	0.78
			1.00		:	1.00

product i

(i.e. part-worths) of segment s

$$\Pr(i|s) = \frac{p_{(s=s)}}{\sum_{s} p_{(s=s)}} \times \frac{\text{Likelihood}(i|s)}{\text{Likelihood}(i|s)}$$

With Likelihood(i|s)=
$$p_s(i|C) = \frac{exp(U_{is})}{\sum_{j=1}^m exp(U_{js})} = \frac{exp(x_i\beta_s)}{\sum_{j=1}^m exp(x_j\beta_s)}$$

Adding segment increases model fit by construction, but is increase sufficient to justify increased model complexity?

 \Rightarrow Tradeoff between model fit & complexity (# parameters)

Fit is good >< Complexity is bad

 Popular and simple approach: try different numbers of segments, and minimize some "information criterion" balancing fit and complexity

Information Criterion (IC) = $-2 \times LL + P \times npar$

- With
 - LL = (natural) log-likelihood (given by sawtooth)
 - P = penalty (depends on the criterion chosen)
 - npar = number of estimated parameters

Adding segment increases model fit by construction, but is increase sufficient to justify increased model complexity?

 $\Rightarrow Tradeoff between model fit & complexity (# parameters)$ Fit is good >< Complexity is bad

 Popular and simple approach: try different numbers of segments, and minimize some "information criterion" balancing fit and complexity

Information Criterion (IC) = $-2 \times LL + P \times npar$

Most common ones:

Akaike (AIC): largest number of segments (too many?) Bayesian (BIC): most popular in literature Consistent Akaike (CAIC): smallest number of segments

Information criterion (IC): $-2 \times LL + P \times npar$

		Penalty P
Akaike	AIC	2
Bayes	BIC	In(nb. obs)
Consistent Akaike	CAIC	In(nb.obs) + I

Information criterion (IC): $-2 \times LL + P \times npar$

		Penalty P	Nb obs. = 10	Nb obs.= 100	Nb obs. = 1000
Akaike	AIC	2	2	2	2
Bayes	BIC	In(nb. obs)	2.30	4.61	6.91
Consistent Akaike	CAIC	ln(nb.obs) + I	3.30	5.61	7.91

BIC and CAIC give higher penalties \rightarrow they favor less segments

Golf Ball Data – Estimation Summary

- 24	A	B	С	D	E	F	G	Н		J
1	Latent Class Estimation									
2										
3	Minimum number of groups	1		Mag		stima	tod f			
4	Maximum number of groups	8		MOC	ieis e	stima	lited for	or		
5	Number of replications	5		l to	8 seg	gmen	ts			
6	Maximum number of iterations	100								
7	Convergence limit for log likelihood	0.01000								
8	Standard errors reported									
9	All pairs of solutions will be tabulated									
10	Random number seed	2562								
11										
12	Null log-likelihood	-5198.60385								
13										
14	Summary of best replications									
15	Groups	Replication	Log-likelihood	Pct Cert	AIC	CAIC	BIC	ABIC	Chi-Square	Relative Chi-Square
16	1	3	-4600.39430	11.50712	9218.78860	9283.85420	9274.85420	9246.25651	1196.41911	132.93546
17	2	1	-3994.88613	23.15463	8027.77226	8165.13297	8146.13297	8085.76008	2407.43545	126.70713
18	3	3	-3872.78105	25.50344	7803.56210	8013.21792	7984.21792	7892.06983	2651.64561	91.43606
19	4	4	-3830.12894	26.32389	7738.25789	8020.20882	7981.20882	7857.28552	2736.94982	70.17820
20	5	4	-3798.74222	26.92765	7695.48444	8049.73049	8000.73049	7845.03198	2799.72326	57.13721
21	6	5	-3775.86204	27.36777	7669.72408	8096.26524	8037.26524	7849.79152	2845.48363	48.22854
22	7	3	-3760.20059	27.66903	7658.40119	8157.23746	8088.23746	7868.98853	2876.80652	41.69285
23	8	2	-3747.06254	27.92175	7652.12508	8223.25646	8144.25646	7893.23233	2903.08263	36.74788

Based on CAIC, we select 3 segments

Golf Ball Data – Segment Sizes

al.	A	В	С	D		
31	Adjusted Bayesian Info Criterion	7892.11997				
32	Chi-Square	2651.59547				
33	Relative Chi-Square	91.43433				
34						
35	Segment Sizes	24.2%	14.9%	60.9%		
36						
37 Part Worth Utilities						
38	High-Flyer Pro, by Smith and Forester	1.10892	<u>4.4</u> 1737	0.40825		
🛯 🗣 🕨 Summary 🖉 1 Groups 🖉 2 Groups 🛛 3 Groups 🖉 4 Groups 🖉 🖛						

Ensure that segments are large enough (substantiality)

• Rule of thumb: at least 10%

Segment sizes represent prior probabilities

Golf Ball Data – Partworths Per Segment

	A	В	C	D
37	Part Worth Utilities			
38	High-Flyer Pro, by Smith and Forester	1.10892	4.41737	0.40825
39	Magnum Force, by Durango	0.51904	4.36426	0.31703
40	Eclipse+, by Golfers, Inc.	-0.74320	2.18729	-0.28384
41	Long Shot, by Performance Plus	-0.88477	-10.96891	-0.44144
42				
43	Drives 5 yards farther than the average ball	-0.91240	-1.59377	-0.36313
44	Drives 10 yards farther than the average ball	0.35230	0.29488	0.08693
45	Drives 15 yards farther than the average ball	0.56010	1.29890	0.27621
46				
47	\$4.99 for package of 3 balls	1.28277	4.14243	0.49397
48	\$6.99 for package of 3 balls	0.11582	3.02674	0.21384
49	\$8.99 for package of 3 balls	-0.21453	2.81643	-0.07400
50	\$10.99 for package of 3 balls	-1.18406	-9.98560	-0.63381
51				
52	NONE	0.78648	9.96769	-2.09669
53				

- For every segment study partworths and t-ratios
- Compare partworths within a segment only

Golf Ball Data – Partworths Across Segments

	A	B	С	D				
88	Part Worth Utilities Rescaled for Comparability							
89	High-Flyer Pro, by Smith and Forester	56.07215	40.89273	46.80347				
90	Magnum Force, by Durango	26.24500	40.40112	36.34517				
91	Eclipse+, by Golfers, Inc.	-37.57945	20.24830	-32.54056				
92	Long Shot, by Performance Plus	-44.73770	-101.54215	-50.60808				
93								
94	Drives 5 yards farther than the average ball	-46.13519	-14.75399	-41.63101				
95	Drives 10 yards farther than the average ball	17.81411	2.72975	9.96559				
96	Drives 15 yards farther than the average ball	28.32109	12.02424	31.66542				
97								
98	\$4.99 for package of 3 balls	64.86263	38.34756	56.63014				
99	\$6.99 for package of 3 balls	5.85634	28.01931	24.51580				
100	\$8.99 for package of 3 balls	-10.84772	26.07246	-8.48406				
101	\$10.99 for package of 3 balls	-59.87124	-92.43933	-72.66188				
102								
103	NONE	39.76780	92.27353	-240.37258				

 Partworths are rescaled to facilitate comparison across segments [Rescaling such that average attribute range is 100 within every segment]

Golf Ball Data – Partworths Across Segments

	A	B	С	D				
88	Part Worth Utilities Rescaled for Comparability							
89	High-Flyer Pro, by Smith and Forester	56.07215	40.89273	46.80347				
90	Magnum Force, by Durango	26.24500	40.40112	36.34517				
91	Eclipse+, by Golfers, Inc.	-37.57945	20.24830	-32.54056				
92	Long Shot, by Performance Plus	-44.73770	-101.54215	-50.60808				
93								
94	Drives 5 yards farther than the average ball	-46.13519	-14.75399	-41.63101				
95	Drives 10 yards farther than the average ball	17.81411	2.72975	9.96559				
96	Drives 15 yards farther than the average ball	28.32109	12.02424	31.66542				
97								
98	\$4.99 for package of 3 balls	64.86263	38.34756	56.63014				
99	\$6.99 for package of 3 balls	5.85634	28.01931	24.51580				
100	\$8.99 for package of 3 balls	-10.84772	26.07246	-8.48406				
101	\$10.99 for package of 3 balls	-59.87124	-92.43933	-72.66188				
102								
103	NONE	39.76780	92.27353	-240.37258				

Eclipse+ brand relatively more preferred by segment 2
 [Caution: t-statistic insignificant (.03); for other segments negative significant]

Golf Ball Data – Attribute Importances

al.	A	В	С	D
105	Attribute Importances			
106	Brand:	33.60328	47.47829	32.47052
107	Performance:	24.81876	8.92608	24.43214
108	Price:	41.57796	43.59563	43.09734
109				
110	The average maximum membership probability is 0.96302.			

Segment 2 ...

... seems to care little for Performance compared to segment I & 3

... attaches more importance to Brand compared to segment I & 3